## ESTIMATED ENERGY PRODUCTION AND ECONOMICS FOR A LARGE WIND TURBINE GENERATOR INSTALLED AT THE IPSWICH MUNICIPAL LIGHT DEPARTMENT SITE IN IPSWICH, MASSACHUSETTS

Prepared For: Meridian Associates, Inc. 152 Conant Road Beverly, MA 01915 and

> Ipswich Municipal Light Department Ipswich, MA and

Ipswich School Department Ipswich, MA

Prepared By: William A. Vachon W. A. Vachon & Associates, Inc. Manchester, MA 01944 Tel: (978) 526-4315 Fax: (978) 526-8180 wavachon@aol.com

March 2008

#### **NOTICE**

Working on a subcontract basis to Meridian Associates, Inc., this report was prepared by W. A. Vachon & Associates, Inc. for use by Meridian Associates, Inc. (MAI) and the Town of Ipswich, Massachusetts. The report summarizes our findings from our evaluation of the wind resource, energy production potential, revenue generation, and economics for a large wind turbine generator (WTG) that could potentially be installed on a plot of land at the end of Town Farm Road in Ipswich, Massachusetts. The land is owned by the Town of Ipswich. The power generated from the WTG will be shared between the Ipswich Municipal Light Department (the provider of electricity to the town), the Ipswich Middle/High School, and other Town of Ipswich buildings.

Even though wind energy technology has been under development for more than a decade, and thousands of wind turbines have operated for several years, there is still a great deal that is unknown about evaluating wind resources, wind turbines, the loads induced on wind turbines by the dynamics in winds, how to control loads, long-term wear factors, and operation and maintenance costs.

The work presented in this report represents our best efforts and judgments based on the best information available at the time that we prepared this report. Any use which is made of this report by third parties is solely their responsibility for damages that may be sustained by such third parties as a consequence of their reliance on the information and opinions that we have provided herein.

## ESTIMATED ENERGY PRODUCTION AND ECONOMICS FOR A WIND TURBINE GENERATOR INSTALLED AT THE IPSWICH MUNICIPAL LIGHT DEPARTMENT SITE IN IPSWICH, MASSACHUSETTS

#### **TABLE OF CONTENTS**

| Section | n Description                                        | Page |
|---------|------------------------------------------------------|------|
| 1.      | EXECUTIVE SUMMARY                                    | 1    |
| 2.      | INTRODUCTION                                         | 4    |
| 2.1.    | Background                                           | 4    |
| 2.2.    | Focus of This Report                                 | 5    |
| 3.      | SITE WIND RESOURCE ANALYSIS                          | 5    |
| 3.1.    | Site Location                                        | . 5  |
| 3.2.    | Historical, Measured Wind Data                       | 6    |
| 3.2.1   | . Mean Annual Average Wind Speeds at WTG Hub Height  | 6    |
| 3.2.2   | . Wind Directional Distribution                      | . 11 |
| 3.2.3   | Turbulence and Peak Wind Speed                       | 13   |
| 3.3.    | Obstructions and Wakes                               | 12   |
| 4.      | DESCRIPTION OF CANDIDATE WIND TURBINE                |      |
|         | GENERATOR (WTG)                                      | 13   |
| 4.1.    | Introduction                                         | . 13 |
| 4.2.    | Candidate Wind Turbine                               | 13   |
| 4.2.1   | . WTG Selection.                                     | 13   |
| 4.2.2   | WTG Description                                      | . 14 |
| 5.      | WTG ENERGY PRODUCTION                                | . 16 |
| 5.1.    | General Description of WTG Energy Capture            | . 16 |
| 5.2.    | Total Net Annual Energy Production                   | . 20 |
| 5.3.    | WTG Hourly Average Output                            | 20   |
| 6.      | ECONMOMIC ANALYSIS                                   | 22   |
| 6.1.    | Value of WTG Power to IMLD and the                   |      |
|         | Ipswich School District (ISD)                        | 22   |
| 6.2.    | Annual Income from WTG Production                    |      |
|         | (50 <sup>th</sup> Percentile Projection)             | 24   |
| 6.3.    | WTG Long-Term Operation and Maintenance (O&M) Costs. | 25   |
| 7.      | SUMMARY OF ECONOMIC PROJECTIONS                      | 34   |
| 8.      | CONCLUSIONS                                          | 34   |
| 9.      | RECOMMENDATIONS                                      | 37   |

## **Appendices**

| Appe | endix Description Pa                                                                            | ige |
|------|-------------------------------------------------------------------------------------------------|-----|
| Α.   | Summary of Wind Data Measured at Ipswich Site by UMassA-1 thru                                  | A-8 |
| B.   | Logan Airport Wind Speed Measurements (for correlation<br>and scaling to a long-term average)B· | 1   |
| C.   | IMLD On-Peak and Off-Peak Monthly ScheduleB-                                                    | 1   |

### **LIST OF FIGURES**

| Contents                                                          | Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Map of Northern Portion of Ipswich and Proposed Wind Project Site | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Wind Speed Frequency Distributions for Ipswich Site on            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Town Farm Road, Alpha = 0.23                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Calculated Monthly Average Wind Speeds at Ipswich, Town Farm      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Road Site, 60 and 80-m Heights                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Output Power Curve of GE Model 1.5sle WTG (kW at Sea              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Level Air Density)                                                | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Historical Retail Electricity Costs for Ipswich                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Middle-High School, \$/MWh                                        | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                   | Contents         Map of Northern Portion of Ipswich and Proposed Wind Project Site         Wind Speed Frequency Distributions for Ipswich Site on         Town Farm Road, Alpha = 0.23         Calculated Monthly Average Wind Speeds at Ipswich, Town Farm         Road Site, 60 and 80-m Heights         Output Power Curve of GE Model 1.5sle WTG (kW at Sea         Level Air Density)         Historical Retail Electricity Costs for Ipswich         Middle-High School, \$/MWh |

## LIST OF TABLES

| Table | Contents                                                     | Page |
|-------|--------------------------------------------------------------|------|
| 1-1.  | Summary of Wind Speeds and Energy Production from            |      |
|       | 1.5-MW, 77-m diameter, GE WTG at Town Farm Road Site         | 2    |
| 1-2.  | Estimated Net Year-1 Income from Wind Power for Each Entity  | 2    |
| 1-3.  | Summary of Net Revenue Projections for Each Entity for       |      |
|       | Nominal Ownership Cases Studied                              | . 2  |
| 3-1.  | Wind Speed Frequency Distribution for Alpha =0.23            | 9    |
| 3-2.  | Mean Hourly Wind Speeds, 60-m Hub Height                     | . 11 |
| 3-3.  | Mean Hourly Wind Speeds, 80-m Hub Height                     | . 12 |
| 5.2.  | Output of GE Wind Model 1.5sle, 1.5-MW WTG, 60-m Hub Height. | 18   |
| 5-3.  | Output of GE Wind Model 1.5sle, 1.5-MW WTG, 80-m Hub Height. | 19   |
| 5-4.  | Estimated Hourly WTG Output, 60-m Hub Height                 | 21   |
| 5-5.  | Estimated Hourly WTG Output, 80-m Hub Height                 | 21   |
| 6-1.  | Estimated Costs for IMLD Purchased Power Based on MMWEC      |      |
|       | Projections Thru June 2009                                   | 22   |

## **LIST OF TABLES (Continued)**

| Table | Contents                                                          | Page |
|-------|-------------------------------------------------------------------|------|
| 6-2.  | IMLD Projected Average Monthly Costs for                          |      |
|       | Purchased Power in 2010, \$/MWh                                   | 23   |
| 6-3.  | Ipswich Municipal Light Department Time-of-Use Periods            | 23   |
| 6-4.  | ISD Electrical Consumption, Average Costs and Premium             |      |
|       | Paid Vs. IMLD Costs in 2007.                                      | 24   |
| 6-5.  | Estimated Avg. Monthly ISD Electricity Rates in Year 2010, \$/MWh | 24   |
| 6-6.  | Projected Average Cost of Power for IMLD Based on                 |      |
|       | On-Peak and Off-Peak Schedule and Costs                           | 26   |
| 6-7.  | Projected Average Cost of Power for ISD Based on                  |      |
|       | IMLD Rate + Premium                                               | . 27 |
| 6-8.  | Total Value of Wind-Generated Power to IMLD By Monthly            |      |
|       | Time Block for Typical Day (60-m Hub Height), \$                  | 28   |
| 6-9.  | Total Value of Wind-Generated Power to ISD By Monthly             |      |
|       | Time Block for Typical Day (60-m Hub Height), \$                  | 29   |
| 6-10. | Total Value of Wind-Generated Power to IMLD By Monthly            |      |
|       | Time Block for Typical Day (80-m Hub Height), \$                  | 30   |
| 6-11. | Total Value of Wind-Generated Power to ISD By Monthly             |      |
|       | Time Block for Typical Day (80-m Hub Height), \$                  | 31   |
| 6-12. | Summary of Annual Gross Revenue Projections for Range             |      |
|       | of Expected WTG Ownership by IMLD and ISD                         | 32   |
| 6-13. | O&M Cost Projections by Year for Single GE Model 1.5sle,          |      |
|       | 60-m Hub Height WTG (with 5-year warranty)                        | 33   |
| 6-14. | O&M Cost Projections by Year for Single GE Model 1.5sle,          |      |
|       | 80-m Hub Height WTG (with 5-year warranty)                        | 34   |
| 7-1.  | Summary of 20-Year Cash Flows for Joint IMLD-ISD                  |      |
|       | Wind Power Project on Town Farm Road (60-m Hub Height)            | 35   |
| 7-2.  | Summary of 20-Year Cash Flows for Joint IMLD-ISD                  |      |
|       | Wind Power Project on Town Farm Road (80-m Hub Height)            | 36   |

### ESTIMATED ENERGY PRODUCTION AND ECONOMICS FOR A WIND TURBINE GENERATOR INSTALLED AT THE IPSWICH MUNICIPAL LIGHT DEPARTMENT SITE IN IPSWICH, MASSACHUSETTS

Prepared By: William A. Vachon W. A. Vachon & Associates, Inc. Manchester, MA 01944 (978) 526-4315 wavachon@aol.com

March 2008

## **1. EXECUTIVE SUMMARY**

**Introduction**. This report is a follow-up to a study originally conducted in year 2005 in which we analyzed of the economics of the Ipswich Municipal Light Department (IMLD) purchasing a single large, electricity-producing wind turbine generator (WTG) and locating at the end of Town Farm Road in Ipswich. All of the power derived from the WTG was assumed to offset the wholesale purchase of electricity by IMLD at rates valued in accordance with the time-of-use costs billed to IMLD.

<u>Goal of This Study</u>. This study focuses a new, joint wind project involving IMLD and the Ipswich School District (ISD) in which a single MW-scale WTG would be installed at the site at the end of Town Farm Road. The output of the WTG would be shared in proportion to the funds provided by each party, and the value of the power delivered to each party would be reflective of the projected time-of-use costs for each party, starting in July 2010. The goal of this report is to project the economics of such a joint project IMLD and ISD.

**WTG Studied**. In this study, we have evaluated a General Electric Model 1.5sle, 1.5-MW, 77-m diameter WTG for the site because it appears that IMLD may be able to purchase such a WTG with the assistance of the Massachusetts Municipal Wholesale Electric Co-operative (MMWEC), to which they are a member utility. We have examined the use of such WTGs at a hub height of either 60 m (197 feet) or 80 m (262 feet).

Wind Resource and Energy Production Projections. Based on the one year of wind data recorded by the Renewable Energy Research Laboratory at the University of Massachusetts in Amherst, MA (UMass), we have projected the long-term average wind resource for the site (at various heights above ground), and the net energy production and revenue generation for a GE WTG with either hub height. We have included the details of our analyses of the measured winds in Appendix A. In Table 1-1, we have summarized the wind data and annual production for each WTG height analyzed.

1

|                                           | Hub Height, feet (m) |               |  |  |  |  |  |  |
|-------------------------------------------|----------------------|---------------|--|--|--|--|--|--|
| Parameter                                 | 197 ft (60 m)        | 262 ft (80 m) |  |  |  |  |  |  |
| Annual Average Wind Speed, mph (m/s)      | 12.74 (5.70)         | 13.64 (6.10)  |  |  |  |  |  |  |
| Annual Average WTG Energy production, kWh | 2,580,000            | 3,019,000     |  |  |  |  |  |  |
| Annual Average WTG Capacity Factor, %     | 19.6%                | 23.0%         |  |  |  |  |  |  |

 Table 1-1. Summary of Wind Speeds and Energy Production from

 1.5-MW, 77-m dia. GE WTG at Town Farm Road, Ipswich, MA

**Economic Projections**. Table 1-2 provides our estimated net income (prior to debt service) for IMLD and ISD as a function of project ownership. These estimates reflect a levelized annual O&M cost of \$43k and \$45k per year for a WTG with a 60-m or 80-m hub height, respectively. Based on an estimated project cost of approximately \$3.24M for a 60-m hub-height WTG, we estimate IMLD and ISD would own roughly 51 and 49 percent of the project, respectively. Similarly, an 80-m hub height WTG would cost \$3.4M to install and IMLD and ISD would own roughly 53 and 47 percent of the project, respectively.

Table 1-2. Estimated Net Year-1 Income from Wind Power for Each Entity

|                      | Net Value at 60 | -m H | lub Ht  | Net Value at 80-m Hub Ht |         |     |         |  |
|----------------------|-----------------|------|---------|--------------------------|---------|-----|---------|--|
| Percentage Ownership | Owi             | ner  |         | Owner                    |         |     |         |  |
|                      | IMLD            |      | ISD     |                          | IMLD    | ISD |         |  |
| 0%                   | \$<br>-         | \$   | -       | \$                       | -       | \$  | -       |  |
| 10%                  | \$<br>25,386    | \$   | 35,380  | \$                       | 30,332  | \$  | 42,074  |  |
| 20%                  | \$<br>50,773    | \$   | 70,759  | \$                       | 60,665  | \$  | 84,148  |  |
| 30%                  | \$<br>76,159    | \$   | 106,139 | \$                       | 90,997  | \$  | 126,222 |  |
| 40%                  | \$<br>101,546   | \$   | 141,518 | \$                       | 121,329 | \$  | 168,296 |  |
| 50%                  | \$<br>126,932   | \$   | 176,898 | \$                       | 151,662 | \$  | 210,370 |  |
| 60%                  | \$<br>152,318   | \$   | 212,278 | \$                       | 181,994 | \$  | 252,443 |  |
| 70%                  | \$<br>177,705   | \$   | 247,657 | \$                       | 212,326 | \$  | 294,517 |  |
| 80%                  | \$<br>203,091   | \$   | 283,037 | \$                       | 242,658 | \$  | 336,591 |  |
| 90%                  | \$<br>228,478   | \$   | 318,416 | \$                       | 272,991 | \$  | 378,665 |  |
| 100%                 | \$<br>253,864   | \$   | 353,796 | \$                       | 303,323 | \$  | 420,739 |  |

Note: Includes costs for O&M, that reflect a 20-year levelized estimate; no debt service costs.

After taking into account bond interest and principal payments by each project entity, we arrived at the annual net cash flow projections that we summarize in Table 1-3.

Table 1-3. Summary of Net Revenue Projections for Each Entity For Nominal Ownership Cases Studied

| _           |        |             |           | Fiscal Year | r        |          |           |           |           |           |           |
|-------------|--------|-------------|-----------|-------------|----------|----------|-----------|-----------|-----------|-----------|-----------|
|             | Entity | 2009        | 2010      | 2011        | 2012     | 2013     | 2014      | 2015      | 2016      | 2017      | 2018      |
|             | ISD    | -80,000     | 101,595   | 106,135     | 110,788  | 115,558  | 120,447   | 120,774   | 125,338   | 129,342   | 132,264   |
| 60-m        | IMLD   | -\$164,000  | -\$21,649 | -\$14,092   | -\$6,450 | \$1,282  | \$9,104   | \$12,217  | \$19,641  | \$26,457  | \$32,130  |
| Hub         |        | 2019        | 2020      | 2021        | 2022     | 2023     | 2024      | 2025      | 2026      | 2027      | 2028      |
| Height      | ISD    | 135,333     | 138,962   | 143,004     | 147,548  | 150,869  | 154,981   | 161,239   | 166,728   | 171,932   | 177,751   |
|             | IMLD   | \$37,916    | \$44,241  | \$50,952    | \$58,138 | \$64,032 | \$70,698  | \$79,520  | \$87,513  | \$95,170  | \$103,413 |
| Net Present | ISD    | \$1,299,609 |           |             |          |          |           |           |           |           |           |
| Value       | IMLD   | \$140,501   |           |             |          |          |           |           |           |           |           |
|             |        | 2009        | 2010      | 2011        | 2012     | 2013     | 2014      | 2015      | 2016      | 2017      | 2018      |
| 80-m        | ISD    | -80,000     | 126,348   | 131,506     | 136,794  | 142,214  | 147,769   | 149,000   | 154,291   | 159,072   | 162,846   |
| Hub         | IMLD   | -\$180,000  | -\$5,007  | \$3,755     | \$12,624 | \$21,602 | \$30,692  | \$34,875  | \$43,584  | \$51,676  | \$58,589  |
| Height      |        | 2019        | 2020      | 2021        | 2022     | 2023     | 2024      | 2025      | 2026      | 2027      | 2028      |
|             | ISD    | 166,785     | 171,282   | 176,200     | 181,622  | 185,906  | 190,973   | 198,112   | 204,549   | 210,744   | 217,555   |
|             | IMLD   | \$65,642    | \$73,277  | \$81,337    | \$89,915 | \$97,161 | \$105,237 | \$115,591 | \$125,100 | \$134,281 | \$144,099 |
| Net Present | ISD    | \$1,618,567 |           |             |          |          |           |           |           |           |           |
| Value       | IMLD   | \$397,441   |           |             |          |          |           |           |           |           |           |

**<u>Conclusions</u>**. We conclude the following:

**<u>1. Project Output and Value</u>**. The projected WTG energy levels and capacity factors for each hub height studied are low due to relatively low wind-speeds at the site. This leads to modest energy production from the WTG. However, the high value for the power leads to appealing cash flows for both IMLD and ISD.

<u>2. Wind Turbine Generator</u>. The GE Model 1.5sle WTG is appropriate for the site (i.e., a large rotor diameter compared to its rated power and a good power curve). The annual capacity factors and revenue projections are greater than for several other candidate WTGs. If a WTG with an 80-m hub was installed it would produce approximately 439 MWh more energy per year than a WTG with a 60-m hub height. For the nominal cases of 51 to 53-percent ownership by IMLD, on average the taller tower produces enough additional energy to result in roughly a three-year simple payback for the added cost of the taller tower and additional foundation strength. However, the taller tower may lead to increased permitting problems.

<u>3. Long-Term Operation and Maintenance (O&M) Issues</u>. We estimate that the WTGs that we evaluated can be maintained for an annual, levelized cost of approximately \$43k to \$46k (\$16.67/MWh to \$15.24/MWh) for the 60 and 80-m hub height WTGs, respectively. These estimates include the benefit of a 5-year warranty.

**<u>Recommendations</u>**. We recommend the following:

**<u>1. WTG Acquisition</u>**. Very soon, IMLD and ISD should initiate contact with MMWEC to secure access to a GE Model 1.5sle WTG on good terms. In parallel, the Town must consider its procurement requirements with the desire to work with MMWEC.

<u>2. Alternative Bids</u>. Due to the constrained market for WTGs, WTG prices are high and availability is limited. IMLD should consider the potential of a bid from Vestas (the supplier of WTGs at Hull, MA) or Gamesa (from Spain) and Siemens (formerly Bonus, from Denmark). All three manufacturers supply WTGs in the size range discussed above. If Vestas is pursued, we recommend that the town focus on a Vestas Model V82, 1.65-MW WTG - reliable WTG that is also well suited to the Ipswich wind regime.

<u>3. Warranty</u>. The Town should seek a minimum three-year warranty on the WTG, tower and transformer, with five years the most desirable. IMLD should seek bids with an option to allow IMLD, at the end of the warranty period, to have the supplier train at least three personnel to be capable of carrying out all routine (scheduled) O&M activities on the WTG. This may save IMLD substantial funds, provide important knowledge and experience, and establish a basis for future expansion of its wind program (if desired).

#### 2. INTRODUCTION

#### 2.1. Background

In mid-2005, we provided a report to Meridian Associates that contained the results of an analysis of the economic potential of the Ipswich Municipal Light Department (IMLD) purchasing a single large, electricity-producing wind turbine generator (WTG) and locating at the end of Town Farm Road in Ipswich. The power from the WTG would be used to offset the wholesale purchase of electricity by IMLD. Our report was incorporated into an overall project feasibility study produced by Meridian Associates, Inc.

Since 2005, several factors have changed:

- 1)IMLD sought and was turned down for U. S. Government support from a fund that administers <u>Clean Renewable Energy Bonds</u> (CREBs),
- 2)Independently we also conducted a study for the Ipswich Middle-High School (IM-HS) in which we evaluated the merits of a single WTG located at the IM-HS,
- 3) The IM-HS applied and was successful in receiving bond interest support under the CREBs program,
- 4) IMLD and the IM-HS, in conjunction with the full Ipswich School District (ISD), have developed a plan by which they hope to combine efforts and place one large WTG at the IMLD site at the end of Town Farm Road and share the power output of the WTG in proportion to their investment in the wind project, and
- 5)Due to market conditions, there has become an extreme shortage of large WTGs, but IMLD believes that it may be able to work cooperatively with the Massachusetts Municipal Wholesale Electric Co-operative (MMWEC) to acquire a single General Electric (GE) large WTG with a rated power of 1.5 MW.

Under the plan described in (4) (above), each party would value the power derived at the rates that would be paid if they had to purchase the power from their normal source(s). That is, IMLD would value the power at the wholesale rate and ISD would value the power at the retail rate that would normally be charged by IMLD. It has also been agreed that should the portion of the power being allocated to the ISD exceed the load of the IM-HS, the excess power would be allocated to another school at the same value normally charged to the IM-HS. Thus, all WTG-generated power that is allocable to the schools is valued at the same retail rates and none is projected to be sold by ISD to IMLD at IMLD's wholesale rate.

#### 2.2. Focus of This Report

This report summarizes our estimates of the WTG annual electricity contribution from a 1.5-MW GE WTG to both IMLD and the ISD and the economic merits of the project to each party. Our analysis takes into account the value of the CREBs support to the ISD as well as the daily and monthly variations in the cost of power purchased by IMLD and the monthly power-cost variations for ISD. Bond payments are projected to start in FY2009 (July 1, 2009 through June 30, 2010). However, the WTG is projected to come on line in FY2010.

## **3. SITE WIND RESOURCE ANALYSIS**

### 3.1. Site Location

The proposed project site is an isolated, town-owned, drumlin hill near Ipswich Bay that is adjacent to a former landfill at the end of Town Farm Road located approximately three miles north of Ipswich Center. Figure 3-1 is a map of the area – indicating the general location of the wind site and the relevant land features in the vicinity.



Figure 3-1. Map of Northern Portion of Ipswich and Proposed Wind Project Site

#### 3.2. Historical, Measured Wind Data

The Renewable Energy Research Laboratory of the University of Massachusetts (UMass) in Amherst, MA measured one year of wind data at the Ipswich site. The data were measured from June 1, 2003 through May 31, 2004. The data set consists of redundant wind speed measurements (i.e., two sensors) at heights of 10, 30 and 39 m above ground level (agl), wind direction data at all three heights as well and the measured standard deviations of each sensor output. The calibration factors for each sensor are included in the data sets. The data sets include approximately 98 percent of the possible data measured during the period of record. This is a relatively high percent of acquisition of reliable wind data.

In Appendix A, Tables A-1 through A-7 we have included summaries of the wind speed and direction data measured at the three heights at the Ipswich site at the end of Town Farm Road. Our analyses allowed us to convert the measured data shown in Appendix A so that it can be used to estimate the following factors:

- (a) The long-term average at the hub heights of the WTGs based on only one year of data from the site (where the one year of data may not be representative of a long-term average year).
- (b) The average wind speed at a WTG hub height (of either 60 or 80 m) even though the wind data were acquired at a maximum height of 39 m.

## 3.2.1. Mean Annual Average Wind Speeds at WTG Hub Height

**Long-Term Average Wind Speed at 39-m Height.** We estimated the long-term, average wind resource for the site by acquiring the wind records from a reference site for a period that is longer than the Ipswich data set, but a portion of the data is coincident with the period of record for the Ipswich site. We acquired data from Boston's Logan Airport as the reference site. The data cover a period from year 2000 through June 2005 (see summary in Table B-1 of Appendix B). Logan Airport has a long-term period of wind records and provides a good long-term database by which to establish which years had good, bad or average winds. We compared the coincident wind speeds between Logan and the site for the purpose of evaluating two main factors:

- 1) The correlation of the site winds to those measured at Logan Airport, and
- 2) The amount by which the site winds, recorded during the coincident measurement period (i.e., June 1, 2003 and May 31, 2004), differed by what is estimated to be the long-term average for the site.

We did not use the detailed, hourly wind speeds from Logan Airport because it is expensive to obtain the data from the National Climatic Data Center and was not budgeted. Additionally, the hourly data might not correlate well between the two sites. However, the daily average wind speeds were available via the National Weather Service (NWS) Web Site for Boston. We obtained these data and calculated the daily average wind speeds for the 39-meter level of the meteorological (met) tower. These were then imported to an Excel Worksheet and the Regression Data Analysis tool was used to determine the correlation coefficient. The results of our analysis yielded an R-Value (correlation factor) of 0.91 and an R-Squared value of 0.832, indicating a very good relationship between these two sites.

The annual average wind speed for Logan based on these data is 11.23 mph. The annual average wind speed at Logan Airport for the 12-month measurement period from June 2003 to May 2004 is 11.09 mph. Using a simple ratio approach, we find that the annual average wind speed for the 12-month study period is 1.2 percent lower than what we consider to be the normal or long-term average. We used this adjustment (i.e., +1.2 percent) to create the long-term average wind speed for the IMLD site.

Based on the correction factor of 1.012 to estimate the long-term average, we estimated that the long-term annual average site wind speed, at a 39-m height, is 5.17 m/s (11.53 mph).

<u>Wind Speed Variation with Height – Wind Shear</u>. The variation of the horizontal component of wind speed with height above the ground is defined as vertical wind shear or wind shear. Wind shear is described by the following equation:

$$V_2/V_1 = (H_2/H_1)^{alpha}$$
 (1)

Where:

- $V_2$  and  $V_1$  are the wind speeds at reference heights 2 and 1.
- $H_2$  and  $H_1$  are the reference heights 2 and 1 in consistent units (i.e. meters or feet).
- Alpha is the power-law wind shear coefficient.

Wind shear is a function of the frictional effects of the ground surface cover. The wind power law attempts to emulate this change in wind speed with height through use of the power law exponent, or alpha value. One of the major sources of error in wind turbine project theoretical energy estimates is the extrapolation of wind speeds from the measurement level to the wind turbine hub height.

The power law exponent (alpha) can range in value from slightly negative (decreasing wind speeds with increasing height, found at some places in California) to values as high as 0.45 in forecast areas. The speedup of the wind as it passes over topographic obstacles such as hills and ridges will also greatly affect the expected change in wind speeds with height above ground level (agl).

The typical alpha value that most engineers are familiar with is the 1/7th power law (alpha = 0.14) which was derived over short grass-covered surfaces in the Midwest. Typical alpha values are 0.05 - 0.10 over open hills and ridges; 0.08 - 0.12 over water surfaces; 0.14 - 0.20 over flat terrain with grasses and small bushes; 0.18 - 0.25 over flat or gently rolling terrain with brush and small trees; and 0.25 to 0.45 over heavily wooded area with tall trees. In addition, the wind shear, power-law exponent is not a constant value with height agl. The shear value and resulting power law exponent may be very

large in the lowest 10's of meters above ground level (agl), decreasing for higher heights.

**Ipswich Site Wind Shear**. We used the UMass data to examine the relationship in wind speeds between the 10-meter level and the 39-meter level as well as the 30-meter and 39-meter levels. To determine the change in wind speed between the lower level (either 10-meters or 30-meters) and the higher level (39-meters), we only considered those hour pairs when the wind speed at the lower level was 4.5 m/s (10 mph) or greater. We analyzed the data this way because WTGs generally do not produce useful energy unless the wind speeds are greater than 4.5 m/s. This approach removes any bias due to calm wind conditions.

The site exhibits very high wind shear with a 47 percent increase between 10-m and 39-m and an 8 percent increase between 30-m and 39-m. This increase is equivalent to a power law (shear) exponent (alpha) value of 0.28. On a sector basis, the wind shear is greatest when the wind is blowing from the Northwest and less when the wind is blowing from other compass directions.

We reviewed the wind shear coefficient at a similar type of site, for similar height ranges, at Halibut Point in Rockport, MA and find the value to be approximately the same. We also reviewed wind measurement data from a U. S. D. O. E. historical, wind measurement tower located on Nantucket Island, where, late in the 1970s, winds were measured at heights of 9.1 m (30 feet), 30 m (98 feet) and 45.7 m (150 feet) agl. The data base indicates that the measured wind shear coefficient (alpha) was approximately 0.24 between lower levels and the 45.7-m height. We do not know what type of terrain exists near the Nantucket tower, but by knowing where the tower was located (SE portion of island), we estimate that it may be much like that in and around the IMLD site.

In our current analysis, to project wind speeds to 60 and 80-m hub heights agl, *we have assumed a wind shear power-law coefficient of* 0.23 – a value that is slightly less than that which we calculated from the UMass data (i.e., 0.28). In year 2005 we conducted a similar analysis and issued a report on our projections of site WTG power production. At that time, we had been asked to be conservative in our estimates of power production and had used a wind shear power-law coefficient of 0.18. In this analysis, we are being slightly more aggressive in our assumptions because we have seen indications from other measurements along the coast of Massachusetts that indicate the winds may be slightly better than our prior assumptions. However, we are not using the calculated value of 0.28 for wind shear because, based on experience, we estimate that the shear coefficient (alpha) decreases with height and a value of 0.28 might lead to an unrealistically high value of wind speed at the hub heights of the candidate WTGs.

**Projected Hub-Height Wind Speeds**. Based on the above approach, we developed wind speed frequency distributions for a 60-m and 80-m hub height WTG. We have listed them in Table 3-1 for both a 60-m and 80-m hub height. We have also plotted the distributions in Figure 3-2. We have computed a annual average wind speeds of 5.70 and 6.10 m/s for 60 and 80-m hub heights, respectively.

The distributions shown in Figure 3-2 indicate the typical bell-shaped Weibull distribution. Note that as the annual average wind speed at a site increases, the wind speed probability distribution shifts to the right. This results in more hours with wind speeds at higher WTG output levels and ultimately higher annual wind energy production levels.

| (Town Farm Road Site, Ipswich) |               |         |  |  |  |  |  |  |  |
|--------------------------------|---------------|---------|--|--|--|--|--|--|--|
|                                | Hub Height, m |         |  |  |  |  |  |  |  |
| Center of                      | 60            | 80      |  |  |  |  |  |  |  |
| Wind Speed                     | Hours/        | Hours/  |  |  |  |  |  |  |  |
| Range (m/s)                    | Year          | Year    |  |  |  |  |  |  |  |
|                                |               |         |  |  |  |  |  |  |  |
| 0.5                            | 158.7         | 149.3   |  |  |  |  |  |  |  |
| 1                              | 286.7         | 269.6   |  |  |  |  |  |  |  |
| 2                              | 498.0         | 427.3   |  |  |  |  |  |  |  |
| 3                              | 954.1         | 821.4   |  |  |  |  |  |  |  |
| 4                              | 1,300.0       | 1,157.3 |  |  |  |  |  |  |  |
| 5                              | 1,462.2       | 1,330.4 |  |  |  |  |  |  |  |
| 6                              | 1,257.9       | 1,247.8 |  |  |  |  |  |  |  |
| 7                              | 910.1         | 999.6   |  |  |  |  |  |  |  |
| 8                              | 665.4         | 758.3   |  |  |  |  |  |  |  |
| 9                              | 430.3         | 500.1   |  |  |  |  |  |  |  |
| 10                             | 279.1         | 354.0   |  |  |  |  |  |  |  |
| 11                             | 194.7         | 249.3   |  |  |  |  |  |  |  |
| 12                             | 113.3         | 156.6   |  |  |  |  |  |  |  |
| 13                             | 90.5          | 110.6   |  |  |  |  |  |  |  |
| 14                             | 45.5          | 69.1    |  |  |  |  |  |  |  |
| 15                             | 33.9          | 47.4    |  |  |  |  |  |  |  |
| 16                             | 26.8          | 33.4    |  |  |  |  |  |  |  |
| 17                             | 11.7          | 21.2    |  |  |  |  |  |  |  |
| 18                             | 8.6           | 14.2    |  |  |  |  |  |  |  |
| 19                             | 6.1           | 10.0    |  |  |  |  |  |  |  |
| 20                             | 6.1           | 4.8     |  |  |  |  |  |  |  |
| 21                             | 7.7           | 5.4     |  |  |  |  |  |  |  |
| 22                             | 4.6           | 6.4     |  |  |  |  |  |  |  |
| 23                             | 5.5           | 6.2     |  |  |  |  |  |  |  |
| 24                             | 3.0           | 6.0     |  |  |  |  |  |  |  |
| 25                             | -             | 2.5     |  |  |  |  |  |  |  |
| 26                             | -             | 3.0     |  |  |  |  |  |  |  |
| 27                             | -             | -       |  |  |  |  |  |  |  |
| Avg., m/s:                     | 5.70          | 6.10    |  |  |  |  |  |  |  |

# Table 3-1. Wind Speed FrequencyDistributions for Alpha =0.23- Annual Long-Term Estimates

Figure 3-2. Wind Speed Frequency Distributions for Candidate Site



In Figure 3-3, we have plotted the monthly average wind speeds for a WTG at either a 60-m or 80-m hub height.

Two factors are clear from the data in Figure 3-3:

- There is a significant increase in average monthly wind speeds for an 80-m height compared to a 60-m height.
- The winds during the months of June through September are approximately the same and are the lowest wind speeds of the year. It will be seen in our later analyses and in the tables in Appendix B, that the wind power delivered during these months is significantly lower than during the other months.

<u>Average Daily Wind Profiles</u>. In Tables 3-2 and 3-3 we have listed the hourly average wind speeds for an average day in each month of the year for 60 and 80-m heights (respectively). We will use these projections of typical hourly average wind speeds to drive the analytical model that projects the average hourly, monthly and annual income from the sale of wind-generated power that offsets power purchases by each entity.



#### Table 3-2: Mean Hourly Wind Speeds (in m/s)

for 60-m Hub Height

Ipswich, Masschusetts(End of Town Farm Road)60-m Wind Speed Estimates (mph)Shear Alpha =0.23

Normalized to Long-Term from data measured during June 1, 2003 through May 31, 2004

| Hour | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Mean |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1    | 6.8  | 5.8  | 6.2  | 5.8  | 4.7  | 4.3  | 4.2  | 4.2  | 3.9  | 5.7  | 5.7  | 7.6  | 5.41 |
| 2    | 6.9  | 5.6  | 6.0  | 6.3  | 4.8  | 4.5  | 4.0  | 3.9  | 4.3  | 5.5  | 5.8  | 7.0  | 5.38 |
| 3    | 6.6  | 6.0  | 6.1  | 6.5  | 4.6  | 4.5  | 4.1  | 4.0  | 4.3  | 5.7  | 5.4  | 7.1  | 5.41 |
| 4    | 6.2  | 5.9  | 5.9  | 6.3  | 5.3  | 4.0  | 4.0  | 4.2  | 4.6  | 6.0  | 5.5  | 7.5  | 5.45 |
| 5    | 5.9  | 5.7  | 6.0  | 6.5  | 5.3  | 4.1  | 3.9  | 4.3  | 4.8  | 5.9  | 5.7  | 7.8  | 5.49 |
| 6    | 5.7  | 5.6  | 6.0  | 6.4  | 4.9  | 4.1  | 3.8  | 3.9  | 4.7  | 6.2  | 5.6  | 7.7  | 5.38 |
| 7    | 5.7  | 5.2  | 5.9  | 6.3  | 5.0  | 4.3  | 3.8  | 4.1  | 4.3  | 5.8  | 5.8  | 7.2  | 5.28 |
| 8    | 5.8  | 5.5  | 6.2  | 6.5  | 5.5  | 4.6  | 4.0  | 4.4  | 4.9  | 5.2  | 5.7  | 6.3  | 5.38 |
| 9    | 6.3  | 5.5  | 6.3  | 6.5  | 6.0  | 4.9  | 4.3  | 4.6  | 5.0  | 5.4  | 5.6  | 6.4  | 5.57 |
| 10   | 6.6  | 5.5  | 6.5  | 6.9  | 6.0  | 5.0  | 4.5  | 4.8  | 5.1  | 5.6  | 5.9  | 7.1  | 5.79 |
| 11   | 6.9  | 5.7  | 7.2  | 6.8  | 6.4  | 5.5  | 4.9  | 4.9  | 4.9  | 6.1  | 6.1  | 7.1  | 6.04 |
| 12   | 7.1  | 6.3  | 7.5  | 7.1  | 6.8  | 5.6  | 5.3  | 5.2  | 5.2  | 6.3  | 6.0  | 7.7  | 6.34 |
| 13   | 6.7  | 6.9  | 7.5  | 7.2  | 6.6  | 5.4  | 5.9  | 5.5  | 5.2  | 6.7  | 6.1  | 7.3  | 6.42 |
| 14   | 6.9  | 6.7  | 7.9  | 7.5  | 6.3  | 5.4  | 6.4  | 5.6  | 5.1  | 6.5  | 6.3  | 7.7  | 6.53 |
| 15   | 6.8  | 6.9  | 7.5  | 7.0  | 6.4  | 4.9  | 6.4  | 5.5  | 5.2  | 6.4  | 6.2  | 7.6  | 6.40 |
| 16   | 6.4  | 6.9  | 7.3  | 6.8  | 6.0  | 4.7  | 6.1  | 4.9  | 4.8  | 6.3  | 5.4  | 7.5  | 6.09 |
| 17   | 6.1  | 6.0  | 6.8  | 6.4  | 5.9  | 4.4  | 5.6  | 4.1  | 4.2  | 5.5  | 5.8  | 7.4  | 5.68 |
| 18   | 6.3  | 6.2  | 6.8  | 6.0  | 5.5  | 3.9  | 5.0  | 4.3  | 4.0  | 5.5  | 5.7  | 7.6  | 5.57 |
| 19   | 5.9  | 5.8  | 6.5  | 5.9  | 4.9  | 4.1  | 4.9  | 4.5  | 4.0  | 5.4  | 5.7  | 7.5  | 5.43 |
| 20   | 6.4  | 6.4  | 6.4  | 5.8  | 4.7  | 4.5  | 4.6  | 4.6  | 4.0  | 5.3  | 5.6  | 7.8  | 5.51 |
| 21   | 6.7  | 6.4  | 6.0  | 5.8  | 4.5  | 4.7  | 4.6  | 4.4  | 4.0  | 5.5  | 5.5  | 7.8  | 5.49 |
| 22   | 6.8  | 6.2  | 6.4  | 5.4  | 4.4  | 4.8  | 4.5  | 4.2  | 4.0  | 5.5  | 5.6  | 7.6  | 5.45 |
| 23   | 6.9  | 6.1  | 6.2  | 5.8  | 4.6  | 4.5  | 4.6  | 4.2  | 4.0  | 5.6  | 5.6  | 7.8  | 5.49 |
| 24   | 7.1  | 5.6  | 5.9  | 6.0  | 4.5  | 4.5  | 4.3  | 4.2  | 4.0  | 5.6  | 5.8  | 7.5  | 5.42 |
| Mean | 6.48 | 6.02 | 6.54 | 6.40 | 5.40 | 4.63 | 4.74 | 4.52 | 4.52 | 5.80 | 5.75 | 7.40 | 5.68 |

#### 3.2.2. Wind Directional Distribution

The percent of time that different wind speeds occur from different directions is portrayed as a plot called a wind rose. This chart displays both the fraction of the total annual wind energy that occurs in winds from the specific direction as well as the faction of time each year when the wind blows from that sector. In Figure A-1 (of Appendix A) we have plotted the wind direction data in the form of a wind rose (i.e., a polar plot of the wind directional data) for a 39-m height agl. The wind rose indicates that the primary direction for the strong winds, that can produce useable power, come from the west and northwest directions, with some reasonable winds from the southwest direction.

#### 3.2.3. Turbulence and Peak Wind Speed

**Turbulence**. We used the UMass wind measurements to compute the wind turbulence intensity (TI) values (standard deviation divided by the mean). We found TI to be modest and within the envelope defined for a Class 2 wind site. For the candidate WTG for the site, a GE Model 1.5sle, 1.5-MW (77-m diameter) unit (discussed later), the site TI is significantly less than the design TI.

#### Table 3-3: Mean Hourly Wind Speeds (in m/s)

for 80-m Hub Height

Ipswich, Masschusetts (End of Town Farm Road) 80-m Wind Speed Estimates (mph) Shear Alpha =

0.23

Normalized to Long-Term from data measured during June 1, 2003 through May 31, 2004

| Hour | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Mean |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1    | 7.3  | 6.2  | 6.6  | 6.2  | 5.0  | 4.6  | 4.5  | 4.5  | 4.2  | 6.1  | 6.1  | 8.1  | 5.78 |
| 2    | 7.4  | 6.0  | 6.5  | 6.7  | 5.2  | 4.8  | 4.3  | 4.2  | 4.6  | 5.9  | 6.2  | 7.5  | 5.78 |
| 3    | 7.1  | 6.5  | 6.5  | 7.0  | 5.0  | 4.9  | 4.4  | 4.3  | 4.6  | 6.1  | 5.8  | 7.6  | 5.82 |
| 4    | 6.7  | 6.3  | 6.3  | 6.8  | 5.7  | 4.3  | 4.3  | 4.5  | 4.9  | 6.4  | 5.9  | 8.0  | 5.84 |
| 5    | 6.4  | 6.1  | 6.4  | 7.0  | 5.7  | 4.4  | 4.2  | 4.6  | 5.1  | 6.3  | 6.1  | 8.3  | 5.88 |
| 6    | 6.1  | 6.0  | 6.4  | 6.9  | 5.2  | 4.4  | 4.1  | 4.2  | 5.1  | 6.6  | 6.0  | 8.3  | 5.78 |
| 7    | 6.1  | 5.6  | 6.4  | 6.8  | 5.3  | 4.6  | 4.1  | 4.4  | 4.6  | 6.2  | 6.2  | 7.7  | 5.67 |
| 8    | 6.2  | 5.9  | 6.6  | 6.9  | 5.9  | 5.0  | 4.3  | 4.8  | 5.2  | 5.6  | 6.1  | 6.7  | 5.77 |
| 9    | 6.8  | 5.9  | 6.8  | 7.0  | 6.5  | 5.3  | 4.6  | 4.9  | 5.4  | 5.8  | 6.0  | 6.9  | 5.99 |
| 10   | 7.1  | 5.9  | 7.0  | 7.4  | 6.5  | 5.3  | 4.8  | 5.1  | 5.4  | 6.0  | 6.4  | 7.6  | 6.21 |
| 11   | 7.4  | 6.1  | 7.7  | 7.3  | 6.9  | 5.9  | 5.3  | 5.3  | 5.3  | 6.5  | 6.5  | 7.6  | 6.48 |
| 12   | 7.6  | 6.8  | 8.1  | 7.6  | 7.3  | 6.0  | 5.7  | 5.6  | 5.6  | 6.8  | 6.5  | 8.2  | 6.82 |
| 13   | 7.2  | 7.4  | 8.1  | 7.7  | 7.1  | 5.8  | 6.3  | 5.9  | 5.6  | 7.2  | 6.5  | 7.8  | 6.88 |
| 14   | 7.4  | 7.2  | 8.4  | 8.0  | 6.7  | 5.8  | 6.8  | 6.0  | 5.4  | 7.0  | 6.8  | 8.3  | 6.98 |
| 15   | 7.3  | 7.4  | 8.1  | 7.5  | 6.9  | 5.3  | 6.8  | 5.9  | 5.6  | 6.9  | 6.6  | 8.2  | 6.88 |
| 16   | 6.9  | 7.4  | 7.8  | 7.3  | 6.5  | 5.1  | 6.6  | 5.3  | 5.1  | 6.8  | 5.8  | 8.0  | 6.55 |
| 17   | 6.5  | 6.5  | 7.3  | 6.8  | 6.4  | 4.7  | 6.0  | 4.4  | 4.5  | 5.9  | 6.2  | 8.0  | 6.10 |
| 18   | 6.7  | 6.7  | 7.3  | 6.4  | 5.9  | 4.2  | 5.3  | 4.6  | 4.3  | 5.9  | 6.1  | 8.2  | 5.97 |
| 19   | 6.3  | 6.2  | 7.0  | 6.4  | 5.2  | 4.4  | 5.3  | 4.9  | 4.3  | 5.8  | 6.1  | 8.0  | 5.83 |
| 20   | 6.9  | 6.9  | 6.8  | 6.2  | 5.1  | 4.8  | 5.0  | 4.9  | 4.3  | 5.7  | 6.0  | 8.3  | 5.91 |
| 21   | 7.2  | 6.9  | 6.5  | 6.2  | 4.8  | 5.1  | 5.0  | 4.7  | 4.3  | 5.9  | 5.9  | 8.3  | 5.90 |
| 22   | 7.3  | 6.6  | 6.9  | 5.8  | 4.7  | 5.1  | 4.8  | 4.5  | 4.3  | 5.9  | 6.0  | 8.1  | 5.83 |
| 23   | 7.4  | 6.6  | 6.6  | 6.2  | 4.9  | 4.9  | 5.0  | 4.5  | 4.3  | 6.0  | 6.0  | 8.3  | 5.89 |
| 24   | 7.6  | 6.0  | 6.3  | 6.5  | 4.9  | 4.9  | 4.6  | 4.5  | 4.3  | 6.0  | 6.2  | 8.0  | 5.82 |
| Mean | 6.95 | 6.46 | 7.02 | 6.86 | 5.80 | 4.98 | 5.09 | 4.85 | 4.85 | 6.22 | 6.17 | 7.92 | 6.10 |

**<u>Peak Winds</u>**. We did not have access to sufficient measured, site wind data to compute the peak, once in 50-year, 5-second gust used by WTG designers to qualify a site for a WTG. However, by examining wind records from the region, we find that the occurrence of peak winds in excess of 100 mph is very rare – occurring only during very infrequent hurricanes or very severe winter storms. Based on the wind speeds, turbulence intensity and projected peak winds, we estimate that the IMLD site is low-end IEC Class 2 wind site.

The design capability of a WTG such as the GE Model 1.5sle is appropriate for a Class-2 site. The WTG has a survival peak, 5-second wind-speed gust of approximately 132 mph. Therefore, we believe that the site is appropriate for a GE Model 1.5sle and all Class 2 WTGs in all respects. WTG suppliers will typically confirm these factors prior to bidding and installing a WTG at a site.

#### 3.3. Obstructions and Wakes

<u>**Trees.</u>** There are trees located roughly north of the planned WTG location at the end of Town Farm Road. Their height appears to be approximately 50 to 70 feet (maximum) above ground. The trees are not a concern for the following reasons:</u>

- (1) There are generally few productive winds from the north.
- (2) The elevation of the ground on which they are growing is approximately 20 to 30 feet below the proposed, elevated WTG location.
- (3) The anticipated hub heights of the candidate WTGs are 60 m (197 feet) and 80 m (262 feet). Therefore, the lowest height for the blade passage for a 60-m high hub on a 77-m diameter GE Model 1.5sle WTG, when the blades are at the 6:00 o'clock position (i.e., straight down), is 21.5 m (70.5 feet) above ground level (agl).

<u>Wakes</u>. In addition, only one WTG will be installed at the site. Therefore, there should be no wind-flow affects from upwind WTGs. Based on these estimates for the heights of the trees and the hill on which the WTG would we installed, the WTG dimensions, and the use of a single WTG at the site, we conclude that there should be zero or negligible wake impacts on the WTG.

## 4. DESCRIPTION OF CANDIDATE WIND TURBINE GENERATOR (WTG)

#### 4.1. Introduction

There are several new types of WTGs on the market that, on paper, may appear to hold promise for application at the IMLD site. However, the main driven in our recommendations is to aim for the WTG which Ipswich may have a chance of purchasing. There is currently a major shortage of WTGs because the demand for clean wind energy is growing at a very fast pace in the U. S.

#### 4.2. Candidate Wind Turbine

#### 4.2.1. WTG Selection.

The GE Model 1.5sle, 1.5-MW, 77-m diameter WTG appears to be the best WTG on which to focus for the project. We recommend this WTG at this time because of the following factors:

- 1)Due to an overheated wind power market, there is an extreme shortage of MW-scaled WTGs at this time. As a result, the major manufacturers are paying attention to orders that include at least 40 to 50 MW of WTGs. Therefore, by itself Ipswich may not be able to acquire a large WTG for years under these circumstances.
- 2) The GE Model 1.5sle WTG is a mature product that has been available for several years. Through CY2007, approximately 7,000 to 8,000 such units have been manufactured and installed worldwide.
- 3)The Ipswich School District (ISD) has an approval for CREBs bond-interest support from the Internal Revenue Service (IRS) up to a bonding level of \$1.6

million dollars, but must start the project by December 31, 2008 to fully qualify for the support.

4) IMLD, as project partner with the ISD, is a member of the Massachusetts Municipal Wholesale Electric Cooperative (MMWEC). We understand that MMWEC is purchasing the yet-to-be-built Berkshire wind project in Western Massachusetts that will include on the order of ten (10) General Electric (GE) Model 1.5sle WTGs. We believe that it is possible that IMLD may be able to become part of a MMWEC WTG purchase by adding one unit at a reasonable price. This approach may allow Ipswich to acquire a MW-scale WTG, and it may be possible to do so in a substantially shorter time frame than otherwise.

## 4.2.2. WTG Description

The GE Model 1.5sle has the following features:

- (1) A 77-m (253-foot) diameter rotor;
- (2) Three full-span, pitchable, fiberglass blades;
- (3) A three-stage gearbox that speeds up the rotational shaft speed from the rotor speed of approximately 15 rpm to a generator speed of approximately 1200 rpm;
- (4) A gearbox that is a combination of a dual-stage planetary section with a single high-speed helical-gear stage;
- (5) A nacelle (equipment enclosure at top of tower) that sits atop an enclosed, tubular tower that can range in height from approximately 60 m (197 feet) to greater than an 80 m (262 feet);
- (6) A rotor that is upwind of the tower (i.e., an "upwind WTG");
- (7) It operates in a variable-speed manner such that the speed of the rotor can vary from the average speed by approximately plus or minus 25 percent;
- (8) It meet the latest Federal Energy Regulatory Commission (FERC) requirements for (a) power factor control, (b) SCADA system accessibility for transmissionsystem-operator control, and (c) Voltage Ride-Through (VRT) standards recently required by FERC;
- (9) The WTG has been certified by a recognized European certifying organization, such as Germanischer-Lloyd or Det Norske Veritas, indicating that it been thoroughly analyzed and tested and meet a minimum 20-year design life (on paper) for major components and can survive the required peak wind speeds for their wind-class rating without damage;
- (10) Manufacturing quality control has been certified to international standards and the manufacturers keep their certifications current.

The GE Model 1.5sle is a fully variable-speed WTG that is designed for Class-2 (medium-speed) wind sites. The variable-speed feature on the GE WTG allows approximately plus or minus 25 percent rotor speed variation in response to wind gusts and varying wind speeds. This approach relieves mechanical loads and increases the efficiency of energy capture. As a result, the GE Model 1.5sle has a very beneficial

power curve because it produces more power at each wind speed that a constant-speed WTG of the same size.

GE has several different versions of the 1.5-MW WTG, some with 70.5-m diameter rotors and others with different types of blades. We believe that GE has negotiated with major suppliers and established production runs to mass produce the WTG components and assemble the Model 1.5sle WTGs at the best price and with the most reliability.

**WTG Background**. For nearly ten years generic versions of the Model 1.5 WTG have been built by GE and prior owners of the rights to the WTG design. The first versions of the machine were developed by Tacke – a German company that built 600-kW units and larger. In the process, Tacke established a solid technology base in Germany. In parallel, Zond Energy Systems in California designed several variable-speed WTGs and, in 1998, was acquired by Enron. Tacke became insolvent shortly after that and Enron acquired Tacke and blended the Zond and Tacke designs – leading eventually to a 1.5-MW, variable-speed architecture with a 70.5-m diameter rotor – designed for Class 1 (i.e., high-speed, vigorous) wind sites. The same architecture and design features are resident in the GE Model 1.5sle, but the Model 1.5sle has a larger rotor (to capture more energy in light winds) and is rated for Class 2 (more benign) wind sites. We also believe that GE has introduced a similar WTG with a rotor diameter of approximately 82 m (269 feet) that is tailored for very low wind speed sites such as Ipswich. We are not recommending this larger unit for Ipswich at this time because of the lack of experience with the machine.

In year 2001 or 2002, Enron went into bankruptcy and had to liquidate assets. Through the courts, GE acquired the rights to the Enron 1.5-MW WTG. GE expanded the envelope of available WTGs rated at 1.5 MW and also made the 77-m diameter, Class 2 WTG available. The generic WTG has been the beneficiary of significant GE product improvement work over the past five years. The Model 1.5sle has experienced perhaps the greatest increase in market growth of all WTGs sold today. In the past we have met with GE engineering personnel on several occasions to discus various operational experiences and design aspects of the GE Model 1.5sle. We believe that, at the right price, the GE Model 1.5sle would be a good WTG for IMLD.

**WTG Hub Height**. We recommend that, based on supplier costs, Ipswich should seek cost data on the use of a WTG with either a 60-m or 80-m hub height. There is an economic trade-off with respect to hub height. The higher hub heights produce more annual energy due to the stronger winds found at higher heights (especially if the wind shear is great), but the WTG tower, foundation and installation costs are greater and the average annual maintenance costs are slightly greater (see O&M cost projections).

During the past several years, WTGs have seen rapid price increases attributable to (a) steep rises in steel prices, (b) an over-heated wind power market on a worldwide basis (especially the US), and (c) the strong Danish and Euro currencies relative to the dollar. The steel component of the cost will place more emphasis on using a shorter

tower, especially in light of the fact that the winds at the IMLD site are relatively low and less economic gain is achieved by the taller tower than at more windy sites. We also believe that the 60-m hub height may encounter fewer problems during the permitting phase of the project.

We expect that the WTG price increases may stabilize in the next two to three years. This could result from (a) the continued strong entry of several more WTG suppliers in the US market and (b) the lack of an extension to the Federal Production Tax Credit (PTC) in the US (after December 31, 2008) – that has been a major driver for the very active wind market in the U. S. Because Ipswich is not bound by the schedules and associated with tax-credit pressures that a private developer experiences, it may make sense for Ipswich to seek to phase the installation at a low-pressure period for suppliers if the PTC is not extended beyond CY2008.

## 5. WTG ENERGY PRODUCTION

## 5.1. General Description of WTG Energy Capture

A WTG captures energy from the wind over a range of wind speeds. The wind machine's electricity production at any time is a function of the wind speed at that time. A WTG power curve characterizes its electricity production in kilowatts as a function of the wind speed at the hub height.

<u>WTG Power Curve</u>. Figure 5-1 is a plot of the power curve for the GE Model 1.5sle at an average annual air density of Ipswich. It should be noted that the WTG does not begin producing electricity until the wind speed reaches its cut-in wind velocity of approximately 4 m/s (9 mph). The output increases to 1500 kW at a wind speed of 25 m/s (55 mph) – the WTG cutout wind speed. It is then set to zero for higher wind speeds in order to protect the WTG from damage caused by high winds. To reduce output power to zero at the high wind speeds, the WTG controller causes the blades to "feather" into the wind such that they produce zero torque to the rotor. Because the WTG is designed for Class 2 winds, it is capable of surviving peak, 5-second gusts of 59 m/s (132 mph) with the blades feathered.

**Gross Annual Energy Production**. To estimate the annual energy production for a WTG through the use of wind data described in Section 3, we use the distribution of wind speeds between the cut-in and cut-out velocities – as shown in Table 3-1 and Figure 3-2. The wind data are provided as the number of hours per year, or percent of time the winds equal a specific wind speed at a given height agl. The number of hours per year in each wind speed range are multiplied by the WTG power output at that wind speed (see Figure 5-1) to produce an estimate of the energy production for each wind speed range. These energy estimates are summed for all wind-speed ranges to arrive at the annual total gross energy production estimates.

<u>Net Annual Energy Production</u>. To estimate the net annual energy production, we reduce the gross annual energy production estimate due to various inefficiencies and loss factors such as availability, electric line losses, blade soiling, etc. We base our estimates on the past performance of a great number of projects and basic research which we have conducted or reviewed. In the case of the IMLD site, we estimate a net efficiency factor of approximately 89 percent (i.e., a loss of 11 percent from gross to net energy). The efficiency factor is multiplied by the *gross* energy to result in the prediction for the average *net* energy production per year for a WTG.

<u>Variations in Output</u>. The actual output of the WTG may vary due to (a) errors (inaccuracies) in our projections for the average year and (b) intra-annual variations in the actual winds due to seasonal weather patterns and climatic swings. Below we discuss these variations with the goal that the estimates that we provide should be considered to be the extremes of the 95-percent confidence interval (i.e., there is a 95 percent probability that the actual production will be within the intervals listed).

<u>Uncertainties</u>: Based on (a) the period of data record, (b) our projections of the adjustment of site data to a long-term, annual-average mean wind speed value, (c) the accuracy of the calibrations of the wind sensors, and (d) the uncertainty in our knowledge of the actual wind shear from a height of 39 m to 60 and 80 m agl, we estimated the error bands for our projections to be approximately -20 to +25 percent.



#### Table 5-2. Output of GE Wind, Model 1.5sle, 1.5-MW WTG, 60-m hub ht Assume: Ipswich Annual Air Density = 1.225 MAJOR ASSUMPTIONS

77

60.0

Wind Turbine

| (1) Turbine: | GE 1.5S, 77 m |
|--------------|---------------|
|--------------|---------------|

(2) Rating, kW: 1,500

(3) Baseline Air Dens: kg/m^31.225(4) Actual Site Air Density, kg/m^1.225

(4) Actual Site Air Density, kg/m<sup>\*</sup> (5) Rotor Diameter, m:

(6) Rotor Swept Area, m2: 4,656.6

(7) 1.5sle Hub Height, m:

Shear Alpha = 0.28

|                   |               |             | Sea Level  | Site             | Gross       |
|-------------------|---------------|-------------|------------|------------------|-------------|
| Wind              | Proba-        | Hrs/ Year   | Power      | Power            | Energy      |
| Speed, m/s        | bility        | (Avg. Year) | Output, kW | Output, kW       | Prod'n, kWh |
| 0                 | Not Applic.   | 158.7       | 0          | 0.0              | -           |
| 1                 | Not Applic.   | 286.7       | 0          | 0.0              | -           |
| 2                 | Not Applic.   | 498.0       | 0          | 0.0              | -           |
| 3                 | Not Applic.   | 954.1       | 0          | 0.0              | -           |
| 4                 | Not Applic.   | 1,300.0     | 43.0       | 43.0             | 55,898      |
| 5                 | Not Applic.   | 1,462.2     | 131.0      | 131.0            | 191,548     |
| 6                 | Not Applic.   | 1,257.9     | 250.0      | 250.0            | 314,475     |
| 7                 | Not Applic.   | 910.1       | 416.0      | 416.0            | 378,581     |
| 8                 | Not Applic.   | 665.4       | 640.0      | 640.0            | 425,824     |
| 9                 | Not Applic.   | 430.3       | 924.0      | 924.0            | 397,551     |
| 10                | Not Applic.   | 279.1       | 1181.0     | 1181.0           | 329,617     |
| 11                | Not Applic.   | 194.7       | 1359.0     | 1359.0           | 264,529     |
| 12                | Not Applic.   | 113.3       | 1436.0     | 1470.0           | 166,478     |
| 13                | Not Applic.   | 90.5        | 1481.0     | 1498.0           | 135,569     |
| 14                | Not Applic.   | 45.5        | 1494.0     | 1494.0           | 67,977      |
| 15                | Not Applic.   | 33.9        | 1500.0     | 1500.0           | 50,775      |
| 16                | Not Applic.   | 26.8        | 1500.0     | 1500.0           | 40,200      |
| 17                | Not Applic.   | 11.7        | 1500.0     | 1500.0           | 17,475      |
| 18                | Not Applic.   | 8.6         | 1500.0     | 1500.0           | 12,825      |
| 19                | Not Applic.   | 6.1         | 1500.0     | 1500.0           | 9,075       |
| 20                | Not Applic.   | 6.1         | 1500.0     | 1500.0           | 9,150       |
| 21                | Not Applic.   | 7.7         | 1500.0     | 1500.0           | 11,475      |
| 22                | Not Applic.   | 4.6         | 1500.0     | 1500.0           | 6,900       |
| 23                | Not Applic.   | 5.5         | 1500.0     | 1500.0           | 8,250       |
| 24                | Not Applic.   | 3.0         | 1500.0     | 1500.0           | 4,500       |
| 25                | Not Applic.   | -           | 1500.0     | 1500.0           | -           |
| 26                | Not Applic.   | -           | 0          | 0.0              | -           |
| 27                | Not Applic.   | -           | 0          | 0.0              | -           |
| 28                | Not Applic.   | -           | 0          | 0.0              | -           |
| 29                | Not Applic.   | -           | 0          | 0.0              | -           |
| 30                | Not Applic.   | -           | 0          | 0.0              | -           |
| Totals or Avg.:   | 0.0000        | 8759.9      |            | Gross MW/Yr:     | 2,899       |
| Site Efficiency   | / Factors:    |             |            | Availability:    | 0.97        |
|                   |               |             |            | Wakes:           | 1.00        |
|                   |               |             |            | Line Losses::    | 0.975       |
|                   |               |             |            | Icing & Controls | 0.98        |
|                   |               |             |            | Turbulence:      | 0.98        |
|                   |               |             | Blade      | Contamination:   | 0.98        |
|                   |               |             |            | Micrositing:     | 1.00        |
| Net Efficiency Fa | actor:        |             |            |                  | 0.890       |
|                   |               |             | Net        | MWh/Yr:          | 2,580       |
| Net Annual Capa   | acity Factor: |             | -          |                  | 0.196       |

#### Table 5-3. Output of GE Wind, Model 1.5 sle, 1.5-MW WTGs, 80-m hub ht Assume: Ipswich Annual Air Density = 1.225 MAJOR ASSUMPTIONS

Wind Turbine

(1) Turbine: GE 1.5S, 77 m

(2) Rating, kW: 1,500

(3) Baseline Air Dens: kg/m^3 1.225

(4) Actual Site Air Density, kg/m<sup>4</sup> 1.225

(5) Rotor Diameter, m: 77

 (6) Rotor Swept Area, m2:
 4,656.6

 (7) 1.5 sle Hub Height, m:
 80.0

Shear Alpha = 0.23

|                   |               |             | Sea Level  | Site              | Gross       |
|-------------------|---------------|-------------|------------|-------------------|-------------|
| Wind              | Proba-        | Hrs/ Year   | Power      | Power             | Energy      |
| Speed, m/s        | bility        | (Avg. Year) | Output, kW | Output, kW        | Prod'n, kWh |
| 0                 | Not Applic.   | 149.3       | 0          | 0.0               | -           |
| 1                 | Not Applic.   | 269.6       | 0          | 0.0               | -           |
| 2                 | Not Applic.   | 427.3       | 0          | 0.0               | -           |
| 3                 | Not Applic.   | 821.4       | 0          | 0.0               | -           |
| 4                 | Not Applic.   | 1,157.3     | 43.0       | 43.0              | 49,764      |
| 5                 | Not Applic.   | 1,330.4     | 131.0      | 131.0             | 174,282     |
| 6                 | Not Applic.   | 1,247.8     | 250.0      | 250.0             | 311,950     |
| 7                 | Not Applic.   | 999.6       | 416.0      | 416.0             | 415,834     |
| 8                 | Not Applic.   | 758.3       | 640.0      | 640.0             | 485,312     |
| 9                 | Not Applic.   | 500.1       | 924.0      | 924.0             | 462,092     |
| 10                | Not Applic.   | 354.0       | 1181.0     | 1181.0            | 418,074     |
| 11                | Not Applic.   | 249.3       | 1359.0     | 1359.0            | 338,799     |
| 12                | Not Applic.   | 156.6       | 1436.0     | 1470.0            | 230,202     |
| 13                | Not Applic.   | 110.6       | 1481.0     | 1498.0            | 165,679     |
| 14                | Not Applic.   | 69.1        | 1494.0     | 1494.0            | 103,235     |
| 15                | Not Applic.   | 47.4        | 1500.0     | 1500.0            | 71,100      |
| 16                | Not Applic.   | 33.4        | 1500.0     | 1500.0            | 50,100      |
| 17                | Not Applic.   | 21.2        | 1500.0     | 1500.0            | 31,800      |
| 18                | Not Applic.   | 14.2        | 1500.0     | 1500.0            | 21,300      |
| 19                | Not Applic.   | 10.0        | 1500.0     | 1500.0            | 15,000      |
| 20                | Not Applic.   | 4.8         | 1500.0     | 1500.0            | 7,200       |
| 21                | Not Applic.   | 5.4         | 1500.0     | 1500.0            | 8,100       |
| 22                | Not Applic.   | 6.4         | 1500.0     | 1500.0            | 9,600       |
| 23                | Not Applic.   | 6.2         | 1500.0     | 1500.0            | 9,300       |
| 24                | Not Applic.   | 6.0         | 1500.0     | 1500.0            | 9,000       |
| 25                | Not Applic.   | 2.5         | 1500.0     | 1500.0            | 3,750       |
| 26                | Not Applic.   | 6.1         | 0          | 0.0               | -           |
| Totals or Avg.:   | 0.0000        | 8764.3      |            | Gross MW/Yr:      | 3,391       |
| Site Efficiency F | actors:       |             |            | Availability:     | 0.97        |
|                   |               |             |            | Wakes:            | 1.00        |
|                   |               |             |            | Line Losses::     | 0.975       |
|                   |               |             |            | Icing & Controls: | 0.98        |
|                   |               |             |            | Turbulence:       | 0.98        |
|                   |               |             | Blade      | Contamination:    | 0.98        |
|                   |               |             |            | Micrositing:      | 1.00        |
| Net Efficiency F  | actor:        |             |            | · · · · ·         | 0.890       |
| · · · · ·         |               |             | Net        | t MWh/Yr:         | 3,019       |
| Net Annual Capa   | acity Factor: |             | -          |                   | 0.230       |

<u>Intra-Annual Variations</u>: Based on the long-term wind speed records from Logan Airport, we estimate that the intra-annual variations in the site output, based strictly on wind speed variations will be plus or minus 8 to 12 percent of the estimates that we have provided herein.

#### 5.2. Total Net Annual Energy Production

To project annual net energy production from a WTG at the site, we have employed the WTG manufacturer's power curve and the average wind speed distributions for both 60-m and 80-m hub heights (shown in Table 3-1). We have presented the projections in Tables 5-2 and 5-3 for 60-m and 80-m hub heights, respectively. The results indicate that the GE Model 1.5sle will produce a net annual energy of 2,580 MWh if a hub height of 60 m is installed and a net annual energy of 3,019 MWh if a WTG with an 80-m hub height is installed. The average estimates can be considered to be the annual energy productions for a zero inaccuracy in our projections (i.e., 50<sup>th</sup> percentile in error band) in the case of a wind year equal to the long-term average.

### 5.3. WTG Hourly Average Output

In order to estimate the economic value derived by ISD and IMLD from the WTG output, it is necessary to model the WTG hourly electricity output in relation to the IMLD and ISD electricity costs. I preparation for that, in Tables 5-4 and 5-5 we have listed the hourly average WTG energy production for each hour of the average day in each month for a WTG with either a 60-m or 80-m hub height, respectively.

**Potential Simulation Inaccuracies**. For most feasibility analyses, the most cost-effective approach in using wind data to estimate WTG output is to use hourly average wind speeds representing an average hour for the average day in each month. As we did in this analysis and as shown in Tables 5-4 and 5-5, these data are typically developed from the wind records from a site. Due to "averaging errors" in this simulation process, we had to adjust the model to assure that the average annual capacity factors shown in Tables 5-4 and 5-5 agree with the annual average capacity factors listed in Tables 5-2 and 5-3.

Due to our use of a linear averaging process applied to what is inherently a nonlinear process (i.e., the WTG power curve does not vary linearly with the wind speed), our analysis may miss some of the transient-wind periods when the WTG production is at high or low levels for periods that are shorter than one hour. Therefore, it should be recognized that during periods that are shorter than one hour, transient wind events may cause the WTG power output to greatly exceed or fall far below the averages listed in Tables 5-4 and 5-5. This should not be a concern in this analysis because there is no break point in the analysis where short-term, high WTG output may exceed the load of either IMLD or the ISD, causing the excess power to be improperly valued.

|      | Rat   | ed Powe | r of WTC | G, KŴ | ,     | 1500  |       |          |         |         |       |       |       |
|------|-------|---------|----------|-------|-------|-------|-------|----------|---------|---------|-------|-------|-------|
| Hour | Jan   | Feb     | Mar      | Apr   | Мау   | June  | July  | Aug      | Sept    | Oct     | Nov   | Dec   | Avg.  |
| 1    | 482.3 | 285.0   | 356.8    | 285.0 | 131.8 | 87.4  | 76.4  | 76.4     | 0.0     | 270.0   | 270.0 | 693.5 | 251.2 |
| 2    | 503.2 | 255.0   | 315.0    | 377.7 | 142.9 | 109.6 | 54.2  | 0.0      | 87.4    | 240.0   | 285.0 | 524.2 | 241.2 |
| 3    | 440.5 | 315.0   | 335.9    | 419.6 | 120.7 | 109.6 | 65.3  | 54.2     | 87.4    | 270.0   | 225.0 | 552.4 | 249.6 |
| 4    | 356.8 | 300.0   | 300.0    | 377.7 | 210.0 | 54.2  | 54.2  | 76.4     | 120.7   | 315.0   | 240.0 | 665.3 | 255.9 |
| 5    | 300.0 | 270.0   | 315.0    | 419.6 | 210.0 | 65.3  | 0.0   | 87.4     | 142.9   | 300.0   | 270.0 | 750.0 | 260.9 |
| 6    | 270.0 | 255.0   | 315.0    | 398.7 | 154.0 | 65.3  | 0.0   | 0.0      | 131.8   | 356.8   | 255.0 | 721.7 | 243.6 |
| 7    | 270.0 | 195.0   | 300.0    | 377.7 | 165.1 | 87.4  | 0.0   | 65.3     | 87.4    | 285.0   | 285.0 | 580.6 | 224.9 |
| 8    | 285.0 | 240.0   | 356.8    | 419.6 | 240.0 | 120.7 | 54.2  | 98.5     | 154.0   | 195.0   | 270.0 | 377.7 | 234.3 |
| 9    | 377.7 | 240.0   | 377.7    | 419.6 | 315.0 | 154.0 | 87.4  | 120.7    | 165.1   | 225.0   | 255.0 | 398.7 | 261.3 |
| 10   | 440.5 | 240.0   | 419.6    | 503.2 | 315.0 | 165.1 | 109.6 | 142.9    | 180.1   | 255.0   | 300.0 | 552.4 | 301.9 |
| 11   | 503.2 | 270.0   | 580.6    | 482.3 | 398.7 | 240.0 | 154.0 | 154.0    | 154.0   | 335.9   | 335.9 | 552.4 | 346.8 |
| 12   | 552.4 | 377.7   | 665.3    | 552.4 | 482.3 | 255.0 | 210.0 | 195.0    | 195.0   | 377.7   | 315.0 | 721.7 | 408.3 |
| 13   | 461.4 | 503.2   | 665.3    | 580.6 | 440.5 | 225.0 | 300.0 | 240.0    | 195.0   | 461.4   | 335.9 | 608.8 | 418.1 |
| 14   | 503.2 | 461.4   | 778.2    | 665.3 | 377.7 | 225.0 | 398.7 | 255.0    | 180.1   | 419.6   | 377.7 | 721.7 | 447.0 |
| 15   | 482.3 | 503.2   | 665.3    | 524.2 | 398.7 | 154.0 | 398.7 | 240.0    | 195.0   | 398.7   | 356.8 | 693.5 | 417.5 |
| 16   | 398.7 | 503.2   | 608.8    | 482.3 | 315.0 | 131.8 | 335.9 | 154.0    | 142.9   | 377.7   | 225.0 | 665.3 | 361.7 |
| 17   | 335.9 | 315.0   | 482.3    | 398.7 | 300.0 | 98.5  | 255.0 | 65.3     | 76.4    | 240.0   | 285.0 | 637.1 | 290.8 |
| 18   | 377.7 | 356.8   | 482.3    | 315.0 | 240.0 | 0.0   | 165.1 | 87.4     | 54.2    | 240.0   | 270.0 | 693.5 | 273.5 |
| 19   | 300.0 | 285.0   | 419.6    | 300.0 | 154.0 | 65.3  | 154.0 | 109.6    | 54.2    | 225.0   | 270.0 | 665.3 | 250.2 |
| 20   | 398.7 | 398.7   | 398.7    | 285.0 | 131.8 | 109.6 | 120.7 | 120.7    | 54.2    | 210.0   | 255.0 | 750.0 | 269.4 |
| 21   | 461.4 | 398.7   | 315.0    | 285.0 | 109.6 | 131.8 | 120.7 | 98.5     | 54.2    | 240.0   | 240.0 | 750.0 | 267.1 |
| 22   | 482.3 | 356.8   | 398.7    | 225.0 | 98.5  | 142.9 | 109.6 | 76.4     | 54.2    | 240.0   | 255.0 | 693.5 | 261.1 |
| 23   | 503.2 | 335.9   | 356.8    | 285.0 | 120.7 | 109.6 | 120.7 | 76.4     | 54.2    | 255.0   | 255.0 | 750.0 | 268.5 |
| 24   | 552.4 | 255.0   | 300.0    | 315.0 | 109.6 | 109.6 | 87.4  | 76.4     | 54.2    | 255.0   | 285.0 | 665.3 | 255.4 |
| Mean | 418.3 | 329.8   | 437.9    | 403.9 | 236.7 | 125.7 | 143.0 | 111.3    | 111.4   | 291.2   | 279.9 | 641.0 | 294.2 |
|      |       |         |          |       |       |       |       | Estimate | d Capac | ity Fac | tor:  |       | 0.196 |

Table 5-4. Estimated Hourly WTG Output (kWh)Hub Height, m:Wind Turbine Generator (WTG):GE Model 1.5sle, 77-m diameter

| Table 5-5. Estimated Hourly WTG Outp | ut (kWh)   |
|--------------------------------------|------------|
| Wind Turbine Generator (WTG):        | GE Model 1 |
| Batad Bowar of WTG kW                | 1500       |

Hub Height, m: 80 .5sle, 77-m diameter

60

| Hour | Jan   | Feb   | Mar   | Apr   | Мау   | June  | July  | Aug   | Sept  | Oct   | Nov   | Dec   | Avg.  |  |  |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| 1    | 560.5 | 328.5 | 405.5 | 328.5 | 152.0 | 111.1 | 100.9 | 100.9 | 70.3  | 309.3 | 309.3 | 775.3 | 296.0 |  |  |
| 2    | 586.5 | 290.0 | 386.3 | 424.8 | 179.6 | 131.5 | 80.5  | 70.3  | 111.1 | 276.2 | 328.5 | 612.5 | 289.8 |  |  |
| 3    | 508.5 | 386.3 | 386.3 | 482.6 | 152.0 | 141.8 | 90.7  | 80.5  | 111.1 | 309.3 | 262.4 | 638.5 | 295.8 |  |  |
| 4    | 424.8 | 347.8 | 347.8 | 444.0 | 248.6 | 80.5  | 80.5  | 100.9 | 141.8 | 367.0 | 276.2 | 742.4 | 300.2 |  |  |
| 5    | 367.0 | 309.3 | 367.0 | 482.6 | 248.6 | 90.7  | 70.3  | 111.1 | 165.8 | 347.8 | 309.3 | 841.2 | 309.2 |  |  |
| 6    | 309.3 | 290.0 | 367.0 | 463.3 | 179.6 | 90.7  | 60.1  | 70.3  | 165.8 | 405.5 | 290.0 | 841.2 | 294.4 |  |  |
| 7    | 309.3 | 234.8 | 367.0 | 444.0 | 193.4 | 111.1 | 60.1  | 90.7  | 111.1 | 328.5 | 328.5 | 664.4 | 270.3 |  |  |
| 8    | 328.5 | 276.2 | 405.5 | 463.3 | 276.2 | 152.0 | 80.5  | 131.5 | 179.6 | 234.8 | 309.3 | 424.8 | 271.8 |  |  |
| 9    | 444.0 | 276.2 | 444.0 | 482.6 | 386.3 | 193.4 | 111.1 | 141.8 | 207.2 | 262.4 | 290.0 | 463.3 | 308.5 |  |  |
| 10   | 508.5 | 276.2 | 482.6 | 586.5 | 386.3 | 193.4 | 131.5 | 165.8 | 207.2 | 290.0 | 367.0 | 638.5 | 352.8 |  |  |
| 11   | 586.5 | 309.3 | 664.4 | 560.5 | 463.3 | 276.2 | 193.4 | 193.4 | 193.4 | 386.3 | 386.3 | 638.5 | 404.3 |  |  |
| 12   | 638.5 | 444.0 | 775.3 | 638.5 | 560.5 | 290.0 | 248.6 | 234.8 | 234.8 | 444.0 | 386.3 | 808.3 | 475.3 |  |  |
| 13   | 534.5 | 586.5 | 775.3 | 664.4 | 508.5 | 262.4 | 347.8 | 276.2 | 234.8 | 534.5 | 386.3 | 690.4 | 483.5 |  |  |
| 14   | 586.5 | 534.5 | 874.2 | 742.4 | 424.8 | 262.4 | 444.0 | 290.0 | 207.2 | 482.6 | 444.0 | 841.2 | 511.2 |  |  |
| 15   | 560.5 | 586.5 | 775.3 | 612.5 | 463.3 | 193.4 | 444.0 | 276.2 | 234.8 | 463.3 | 405.5 | 808.3 | 485.3 |  |  |
| 16   | 463.3 | 586.5 | 690.4 | 560.5 | 386.3 | 165.8 | 405.5 | 193.4 | 165.8 | 444.0 | 262.4 | 742.4 | 422.2 |  |  |
| 17   | 386.3 | 386.3 | 560.5 | 444.0 | 367.0 | 121.3 | 290.0 | 90.7  | 100.9 | 276.2 | 328.5 | 742.4 | 341.2 |  |  |
| 18   | 424.8 | 424.8 | 560.5 | 367.0 | 276.2 | 70.3  | 193.4 | 111.1 | 80.5  | 276.2 | 309.3 | 808.3 | 325.2 |  |  |
| 19   | 347.8 | 328.5 | 482.6 | 367.0 | 179.6 | 90.7  | 193.4 | 141.8 | 80.5  | 262.4 | 309.3 | 742.4 | 293.8 |  |  |
| 20   | 463.3 | 463.3 | 444.0 | 328.5 | 165.8 | 131.5 | 152.0 | 141.8 | 80.5  | 248.6 | 290.0 | 841.2 | 312.5 |  |  |
| 21   | 534.5 | 463.3 | 386.3 | 328.5 | 131.5 | 165.8 | 152.0 | 121.3 | 80.5  | 276.2 | 276.2 | 841.2 | 313.1 |  |  |
| 22   | 560.5 | 405.5 | 463.3 | 262.4 | 121.3 | 165.8 | 131.5 | 100.9 | 80.5  | 276.2 | 290.0 | 775.3 | 302.8 |  |  |
| 23   | 586.5 | 405.5 | 405.5 | 328.5 | 141.8 | 141.8 | 152.0 | 100.9 | 80.5  | 290.0 | 290.0 | 841.2 | 313.7 |  |  |
| 24   | 638.5 | 290.0 | 347.8 | 386.3 | 141.8 | 141.8 | 111.1 | 100.9 | 80.5  | 290.0 | 328.5 | 742.4 | 300.0 |  |  |
| Mean | 485.8 | 384.6 | 506.9 | 466.4 | 280.6 | 157.3 | 180.2 | 143.2 | 141.9 | 336.7 | 323.5 | 729.4 | 344.7 |  |  |
|      |       |       |       |       |       |       |       |       |       |       |       |       |       |  |  |

### 6. ECONMOMIC ANALYSIS

#### 6.1. Value of WTG Power to IMLD and the Ipswich School District (ISD)

**IMLD Power Costs**. In Table 6-1, we have listed MMWEC projections of IMLD's average electricity costs through June 2009. We have used the average rate of IMLD costs increases from January through June 2009 to develop projections for IMLD's costs through the end of 2009 (see bottom of  $3^{rd}$  column in Table 6-1).

| Assume | Post-2009 Elec            | tricty Cost Increase/ | Yr, %:              | 2.5                 |
|--------|---------------------------|-----------------------|---------------------|---------------------|
|        | IMLD-MMWEC<br>Provided by | Projections<br>IMLD   | Percent<br>Increase | WAVA<br>Projections |
|        | Ye                        | ar                    | 2008 to             | Year                |
| Month  | 2008                      | 2009                  | 2009                | 2010                |
| Jan    | 101.1                     | 109.7                 | 8.5%                | 112.4               |
| Feb    | 101.4                     | 113.3                 | 11.7%               | 116.1               |
| Mar    | 80.0                      | 92.2                  | 15.3%               | 94.5                |
| Apr    | 84.4                      | 88.2                  | 4.5%                | 90.4                |
| May    | 80.6                      | 96.5                  | 19.7%               | 98.9                |
| June   | 91.8                      | 100.6                 | 9.6%                | 103.1               |
| July   | 97.5                      | 108.8                 |                     | 111.5               |
| Aug    | 98.2                      | 109.5                 |                     | 112.3               |
| Sept   | 99.7                      | <b>h</b> 111.2        |                     | 114.0               |
| Oct    | 96.9                      | \ 108.1               |                     | 110.8               |
| Nov    | 98.5                      | \109.9                |                     | 112.6               |
| Dec    | 103.7                     | 115.7                 |                     | 118.6               |

## Table 6-1. Estimated Costs for IMLD Purchased Power Basedon MMWEC Projections thru June 2009.

\* Note: Use projections for year 2010 in analyses.

For our analyses, we assume that if a WTG project proceeded in Ipswich it would come on line at the beginning of fiscal year 2010 (i.e., July 2010). However, based on convention, we have analyzed the project economics on a calendar-year basis. We believe that any inaccuracies due to differences between calendar and fiscal years are not material in terms of the economic projections. Therefore, in the right-hand column of Table 6-1, we have developed projections for the monthly average IMLD costs in CY2010 based on an assumption of a 2.5-percent annual cost increase over those costs projected for year 2009. In Table 6-2, we have listed our assumptions for the monthly average on-peak, off-peak and average IMLD electricity costs in year 2010. In Table 6-3, we have summarized the IMLD on-peak and off-peak schedule and the months with high and low electric loads. In our economic simulations (discussed below) we use the power costs and time-of-use schedule to estimate the value of the WTG electricity to IMLD.

|                | Jan   | Feb   | Mar   | Apr   | Мау   | June  | July  | Aug   | Sept  | Oct   | Nov   | Dec   |  |  |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| All-Hrs Costs  | 112.4 | 116.1 | 94.5  | 90.4  | 98.9  | 103.1 | 111.5 | 112.3 | 114.0 | 110.8 | 112.6 | 118.6 |  |  |
| On-peak Costs  | 130.4 | 134.7 | 109.6 | 104.9 | 114.7 | 119.6 | 129.3 | 130.2 | 132.2 | 128.5 | 130.6 | 137.5 |  |  |
| Off-peak Costs | 95.6  | 98.7  | 80.3  | 76.8  | 84.1  | 87.6  | 94.8  | 95.4  | 96.9  | 94.2  | 95.7  | 100.8 |  |  |

#### Table 6-2. IMLD Projected Average Monthly Costs for Purchased Power in 2010, \$/MWh

### Table 6-3. Ipswich Municipal Light Department Time-of-Use Periods

| Key                                                | >>>:     | High      | Seaso    | on:     |           |       | Lc  | w Seas | on: |     |     |
|----------------------------------------------------|----------|-----------|----------|---------|-----------|-------|-----|--------|-----|-----|-----|
| Jan                                                | Feb      | Mar       | Apr      | May     | June      | July  | Aug | Sept   | Oct | Nov | Dec |
|                                                    |          |           |          |         |           |       |     |        |     |     |     |
| On-Pea                                             | ak Hours | s (all ye | ar): 7:0 | )0 am ι | intil 10: | 00 pm |     |        |     |     |     |
| Off-Peak Hours (all year): 10:00 pm until 7:00 am. |          |           |          |         |           |       |     |        |     |     |     |

**ISD Electricity Costs**. To estimate ISD's future electricity costs, we rely on IMLD costs and the historic relationship between IMLD and ISD costs. In Figure 6-1, we have plotted the historic average monthly electric utility rates for the Ipswich School District (ISD, applicable to the Middle-High School) for calendar years 2006 and 2007. It is clear that the rates have decreased markedly during the period and appear to have nearly leveled out at costs in the range of \$120 to \$130 per MWh (i.e., 12 to 13 cents per kWh).



In Table 6-4, we have summarized the monthly usage and average costs for ISD and costs applicable to IMLD for year 2007. In the right-hand column of Table 6-4, we have computed the average monthly cost premium per MWh (over and above IMLD's costs) for electricity charged to ISD by IMLD during calendar year 2007. Based on these results, for our analyses we have assumed that the future ISD electricity costs are at a

fixed premium of 43 percent greater than IMLD's costs – as shown in the bottom, right corner of Table 6-4.

Because IMLD does not apply time-of-use metering and billing to its customers, we have, therefore, assumed monthly average costs for power consumed by ISD, irrespective of the time of use. In Table 6-5, we have summarized our estimated average monthly electricity costs for ISD for the year 2010. Note such rates are estimated to be 43 percent greater than the IMLD rates for year 2010. After year 2010, for our 20-year cash flow analysis, we escalated monthly average rates at 2.5 percent per year for 20 years.

|          | Paid/MW    | Electricity        | ISD                  |                 |                  |                    |
|----------|------------|--------------------|----------------------|-----------------|------------------|--------------------|
| lp:      | swich Scho | ol District (ISD E | Electricity Cos      | ts              | Costs            | Cost               |
| Year     | Month      | Usage<br>kWh       | Billed<br>Amount, \$ | ISD<br>(\$/MWh) | IMLD<br>(\$/MWh) | Premium<br>Vs IMLD |
| 2007     | Jan '07    | 169,600            | \$22,858             | 134.8           | 87.0             | 55%                |
|          | Feb '07    | 147,600            | \$19,454             | 131.8           | 81.0             | 63%                |
|          | Mar        | 156,640            | \$18,921             | 120.8           | 74.0             | 63%                |
|          | Apr        | 149,440            | \$18,053             | 120.8           | 101.0            | 20%                |
|          | May        | 138,320            | \$17,887             | 129.3           | 93.0             | 39%                |
|          | June       | 134,960            | \$17,926             | 132.8           | 91.0             | 46%                |
|          | July       | 138,640            | \$17,998             | 129.8           | 88.0             | 48%                |
|          | Aug        | 146,400            | \$17,539             | 119.8           | 93.0             | 29%                |
|          | Sept       | 150,640            | \$18,047             | 119.8           | 82.0             | 46%                |
|          | Oct        | 165,360            | \$20,469             | 123.8           | 89.0             | 39%                |
|          | Nov        | 149,680            | \$19,728             | 131.8           | 88.0             | 50%                |
|          | Dec '07    | 156,480            | \$20,622             | 131.8           | 112.0            | 18%                |
| Annual T | ot or Avg: | 1,803,760          | \$229,502            | 127.3           | 89.9             | 43%                |

Table 6-4. ISD Electricity Consumption, Average Costs and Premium

| Table 6-5. | Estimated Ava | . Monthly IS | D Electricity | / Rates in | Year 2010. | \$/MWh                |
|------------|---------------|--------------|---------------|------------|------------|-----------------------|
|            |               |              |               |            |            | · · · · · · · · · · · |

|               | Jan   | Feb   | Mar   | Apr   | May   | June  | July  | Aug   | Sept  | Oct   | Nov   | Dec   | Avg.  |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| All-Hrs Costs | 160.8 | 166.1 | 135.1 | 129.3 | 141.4 | 147.5 | 159.4 | 160.6 | 163.0 | 158.4 | 161.1 | 169.6 | 154.4 |

In Tables 6-6 and 6-7, we have incorporated the variable electricity costs (in \$/kWh) for IMLD and ISD, respectively, to produce an annual summary of the hourly average costs for each month of the year.

## **6.2.** Annual Income from WTG Production (50<sup>th</sup> Percentile Projection)

We employed the WTG output on an hourly basis, averaged for each month (see Tables 5-4 and 5-5), and the value of the production for ISD and IMLD (Tables 6-6 and 6-7, respectively), to compute the gross revenue from WTG production for the average hour of each month for the average year.

<u>60-m Hub-Height Case</u>. In Tables 6-8 and 6-9, we have summarized the monthly and annual gross income projections for the case of a WTG with a 60-m hub height. In the case shown, we have allocated 51 percent of the gross revenue flow to IMLD and 49 percent to ISD – assuming that such percentages represent the portion of the total project funding derived from each entity (discussed in Section 7).

**80-m Hub-Height Case**. In Tables 6-10 and 6-11, we have summarized the gross revenue analysis for a GE Model 1.5sle with an 80-m hub height for the nominal ownership percentages based on the Meridian installed-cost estimate of \$3.4 million. Due to the projection that ISD will contribute \$1.6 million dollars (i.e., the bonding that is to be covered by CREBs) irrespective of WTG hub height, the ownership percentage for ISD is estimated to be 47 percent for the 80-m hub height WTG, where for the 60-m hubheight case applicable to Tables 6-8 and 6-9, the ISD ownership is projected to be 49 percent.

<u>**Gross Revenue Variation by Ownership Percentage**</u>. In Table 6-12, we have listed the gross revenues for each entity that are applicable for various percentages of ownership from 40 to 60 percent by each entity. In the footnotes to Table 6-12, we have provided simple equations by which the gross revenue for each entity can be obtained for any percentage of ownership for each hub height.

**Variations Due to Errors and Other Sources**. The estimates for each case that we have summarized in Table 6-12 are roughly the 50-th percentile of a distribution of possible inaccuracies and errors in the wind measurements combined with variations in such factors as WTG power curve, WTG availability, gross-to-net energy efficiencies, line losses, etc. The extreme limits (95-percent confidence interval) for such projections are approximately plus or minus 20 to 25 percent within a normal (bell-shaped) distribution. In addition to these possible variations, there will be inter-annual, year-to-year variations on the wind regime due to weather and climate phenomena. These factors also have roughly a normal distribution and will result in variations of on the order of plus or minus eight (8) to ten (10) percent variation about the means of the projected numbers listed above in Table 6-12.

## 6.3. WTG Long-Term Operation and Maintenance (O&M) Costs

To estimate the WTG long-term O&M costs, we applied our detailed, proprietary O&M model that is based on projected operations and scheduled maintenance costs. In addition, the cost model for unscheduled maintenance costs is driven by the mean time between failure (MTBF) of key components and the associated repair costs (including crane costs). Our failure-rate projections and repair costs are derived from our proprietary data base for this information that is based on work related to numerous wind farms in California, Texas and Minnesota . The model estimates WTG component failure rates using Weibull statistical methods and, thus, O&M costs increase in a non-linear manner in the latter years of a project (see "*Long-Term O&M Costs Based on Failure Rates and Repair Costs*", by W. A. Vachon, Windpower 2002, American Wind Energy Assoc. Conf., Portland, OR, June 2002).

| Power c       | OSIS Are TO | and a make |            |            |            |            |            |             | 2.0/0 III 0/0.7 |        |        |        |        |
|---------------|-------------|------------|------------|------------|------------|------------|------------|-------------|-----------------|--------|--------|--------|--------|
|               |             | Hourly Va  | lue of Win | d-Generate | ad Power f | or Each Ho | ourly Time | a Block, Ea | ch Month,       | \$/kWh |        | Γ      |        |
| Hour          | Jan         | Feb        | Mar        | Apr        | May        | ηun        | ٦ul        | Aug         | Sep             | oct    | Nov    | Dec    |        |
| High Season>> | na          | na         | na         | na         | na         | na         | na         | вu          | na              | na     | na     | ΒU     | Avg.   |
| -             | 0.0956      | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956      | 0.0956          | 0.0956 | 0.0956 | 0.0956 | 0.0956 |
| 2             | 0.0956      | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956      | 0.0956          | 0.0956 | 0.0956 | 0.0956 | 0.0956 |
| 3             | 0.0956      | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956      | 0,0956          | 0.0956 | 0.0956 | 0.0956 | 0.0956 |
| 4             | 0.0956      | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956      | 0.0956          | 0.0956 | 0.0956 | 0.0956 | 0.0956 |
| s.            | 0.0956      | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956      | 0.0956          | 0.0956 | 0.0956 | 0.0956 | 0.0956 |
| 9             | 0.0956      | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956      | 0.0956          | 0.0956 | 0.0956 | 0.0956 | 0.0956 |
| 7             | 0.0956      | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956      | 0.0956          | 0.0956 | 0.0956 | 0.0956 | 0.0956 |
| 8 (on peak)   | 0.1304      | 0.1347     | 0.1096     | 0.1049     | 0.1147     | 0.1196     | 0.1293     | 0.1302      | 0.1322          | 0.1285 | 0.1306 | 0.1375 | 0.1252 |
| 6             | 0.1304      | 0,1347     | 0.1096     | 0.1049     | 0.1147     | 0.1196     | 0.1293     | 0.1302      | 0.1322          | 0.1285 | 0.1306 | 0.1375 | 0.1252 |
| 9             | 0.1304      | 0.1347     | 0.1096     | 0.1049     | 0.1147     | 0.1196     | 0.1293     | 0.1302      | 0.1322          | 0.1285 | 0.1306 | 0.1375 | 0.1252 |
| 5             | 0.1304      | 0.1347     | 0.1096     | 0.1049     | 0.1147     | 0.1196     | 0.1293     | 0.1302      | 0.1322          | 0.1285 | 0.1306 | 0.1375 | 0.1252 |
| 12            | 0.1304      | 0.1347     | 0.1096     | 0.1049     | 0.1147     | 0.1196     | 0.1293     | 0.1302      | 0.1322          | 0.1285 | 0.1306 | 0.1375 | 0.1252 |
| 13            | 0,1304      | 0.1347     | 0.1096     | 0.1049     | 0.1147     | 0.1196     | 0.1293     | 0.1302      | 0.1322          | 0.1285 | 0.1306 | 0.1375 | 0.1252 |
| 14            | 0.1304      | 0.1347     | 0.1096     | 0.1049     | 0.1147     | 0.1196     | 0.1293     | 0.1302      | 0.1322          | 0.1285 | 0.1306 | 0.1375 | 0.1252 |
| 15            | 0.1304      | 0.1347     | 0.1096     | 0.1049     | 0.1147     | 0.1196     | 0.1293     | 0.1302      | 0.1322          | 0.1285 | 0.1306 | 0.1375 | 0.1252 |
| 16            | 0.1304      | 0.1347     | 0.1096     | 0.1049     | 0.1147     | 0,1196     | 0.1293     | 0.1302      | 0.1322          | 0.1285 | 0.1306 | 0.1375 | 0.1252 |
| 17            | 0.1304      | 0.1347     | 0.1096     | 0.1049     | 0.1147     | 0.1196     | 0.1293     | 0.1302      | 0.1322          | 0.1285 | 0.1306 | 0.1375 | 0.1252 |
| 38            | 0.1304      | 0.1347     | 0.1096     | 0.1049     | 0.1147     | 0.1196     | 0.1293     | 0.1302      | 0.1322          | 0.1285 | 0.1306 | 0.1375 | 0.1252 |
| 19            | 0.1304      | 0.1347     | 0.1096     | 0.1049     | 0.1147     | 0.1196     | 0.1293     | 0.1302      | 0.1322          | 0.1285 | 0.1306 | 0.1375 | 0.1252 |
| 20            | 0.1304      | 0.1347     | 0.1096     | 0.1049     | 0.1147     | 0.1196     | 0.1293     | 0.1302      | 0.1322          | 0.1285 | 0.1306 | 0,1375 | 0.1252 |
| 21            | 0.1304      | 0.1347     | 0.1096     | 0.1049     | 0.1147     | 0.1196     | 0.1293     | 0.1302      | 0.1322          | 0.1285 | 0.1306 | 0.1375 | 0.1252 |
| 22 ♦          | 0.1304      | 0.1347     | 0.1096     | 0.1049     | 0.1147     | 0.1196     | 0.1293     | 0.1302      | 0.1322          | 0,1285 | 0.1306 | 0.1375 | 0.1252 |
| 23 (off peak) | 0.0956      | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956      | 0.0956          | 0.0956 | 0.0956 | 0.0956 | 0.0956 |
| 24            | 0.0956      | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956     | 0.0956      | 0.0956          | 0.0956 | 0.0956 | 0.0956 | 0.0956 |
| Average       | 0.1173      | 0.1200     | 0.1043     | 0.1014     | 0.1075     | 0.1106     | 0.1166     | 0.1172      | 0.1185          | 0.1161 | 0.1175 | 0.1218 | 0.1141 |

Table 6-6. Projected Average of Cost of Power for IMLD Based on On-Peak and Off-Peak Schedule and Costs

| Table 6 | -7. Proje | cted Avei    | rage of C  | ost of P | ower for   | the ISD E | <b>Based on</b> | IMLD F    | tate + P | remium |           |       |       |
|---------|-----------|--------------|------------|----------|------------|-----------|-----------------|-----------|----------|--------|-----------|-------|-------|
|         | Cost      | premium      | over and   | above    | IMLD cos   | its of:   |                 |           | 43%      |        | Year 2010 |       |       |
|         | Hourly    | · Value of P | ower Purch | ased fro | m IMLD for | Each Hour | -ly Time Blo    | ock, Eacl | ו Month, | \$/kWh |           |       |       |
| Hour    | Jan       | Feb          | Mar        | Apr      | May        | Jun       | Jul             | Aug       | Sep      | Oct    | Nov       | Dec   |       |
|         |           |              |            |          |            |           |                 |           |          |        |           |       | Avg.  |
| 1       | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 2       | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 3       | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 4       | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 5       | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 6       | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 7       | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 8       | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 9       | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 10      | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 11      | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 12      | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 13      | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 14      | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 15      | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 16      | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 17      | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 18      | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 19      | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 20      | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 21      | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 22      | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 23      | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| 24      | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |
| Average | 0.161     | 0.166        | 0.135      | 0.129    | 0.141      | 0.147     | 0.159           | 0.161     | 0.163    | 0.158  | 0.161     | 0.170 | 0.154 |

| Table 6-8.     | Total Va  | lue of W     | /ind-Gen     | erated F      | ower t     | o IMLD I     | By Mont     | thly Tim | e Block   | for Typ   | ical Day  | r, \$     |            |
|----------------|-----------|--------------|--------------|---------------|------------|--------------|-------------|----------|-----------|-----------|-----------|-----------|------------|
|                | GE Mo     | del 1.5s     | le, 1.5-M    | W MTG         | , 60-m     | 197-fool     | t) hub h    | eight    |           | Nominal   | Ownersh   | hip Case  |            |
|                | Estimated | Installed C  | Cost, K\$    | 3,266         |            | - Portion    | n of Gross  | s Revenu | e Allocat | ed to IML | ä         |           | 51%        |
|                |           | Hourly Value | e of Power S | old to IMLD 1 | or Each Ho | urly Time Bl | ock, Each M | onth, \$ |           |           |           |           | Total \$   |
| Hour           | Jan       | Feb          | Mar          | Apr           | May        | ٦un          | Jul         | Aug      | Sep       | Oct       | Nov       | Dec       | Per Time   |
| High Season>>  | na        | B            | g            | na            | na         | na           | na          | na       | na        | na        | na        | па        | Block      |
| -              | 23.50     | 13.89        | 17.39        | 13.89         | 6.42       | 4.26         | 3.72        | 3.72     |           | 13.16     | 13.16     | 33.80     | 147        |
| 2              | 24.52     | 12.43        | 15.35        | 18.41         | 6.96       | 5.34         | 2.64        |          | 4.26      | 11.70     | 13.89     | 25.54     | 141        |
| e              | 21.47     | 15.35        | 16.37        | 20.45         | 5.88       | 5.34         | 3.18        | 2.64     | 4.26      | 13.16     | 10.97     | 26,92     | 146        |
| 4              | 17.39     | 14.62        | 14.62        | 18.41         | 10.24      | 2.64         | 2.64        | 3.72     | 5.88      | 15.35     | 11.70     | 32.42     | 150        |
| 5              | 14.62     | 13.16        | 15.35        | 20.45         | 10.24      | 3.18         |             | 4.26     | 6.96      | 14.62     | 13.16     | 36.55     | 153        |
| 8              | 13.16     | 12.43        | 15,35        | 19.43         | 7.50       | 3.18         | ,           | -        | 6.42      | 17.39     | 12.43     | 35.17     | 142        |
| 2              | 13.16     | 9.50         | 14.62        | 18.41         | 8.04       | 4.26         | ,           | 3.18     | 4.26      | 13.89     | 13.89     | 28.29     | 132        |
| 8 (on peak)    | 18.95     | 16.49        | 19.95        | 22.45         | 14.04      | 7.36         | 3.57        | 6.54     | 10.38     | 12.78     | 17.98     | 26.49     | 177        |
| σ              | 25.12     | 16.49        | 21.11        | 22.45         | 18.43      | 9.39         | 5.77        | 8.02     | 11.13     | 14.75     | 16.99     | 27.96     | 198        |
| ę              | 29.29     | 16.49        | 23.45        | 26.92         | 18.43      | 10.07        | 7.23        | 9,49     | 12.14     | 16.71     | 19.98     | 38.74     | 229        |
| =              | 33.47     | 18.55        | 32.45        | 25.80         | 23.32      | 14.64        | 10.15       | 10.22    | 10.38     | 22.01     | 22.37     | 38.74     | 262        |
| 12             | 36.74     | 25.95        | 37.19        | 29.55         | 28.21      | 15.56        | 13.85       | 12.95    | 13.15     | 24.76     | 20.98     | 50.61     | 309        |
| 13             | 30.69     | 34.57        | 37.19        | 31.06         | 25.77      | 13.73        | 19.78       | 15.94    | 13.15     | 30.24     | 22,37     | 42.69     | 317        |
| 4              | 33.47     | 31.70        | 43.50        | 35.59         | 22.10      | 13.73        | 26.29       | 16.93    | 12.14     | 27.50     | 25.16     | 50.61     | 339        |
| 15             | 32.08     | 34.57        | 37.19        | 28.04         | 23.32      | 9.39         | 26.29       | 15.94    | 13.15     | 26.13     | 23.77     | 48.63     | 318        |
| 16             | 26.51     | 34.57        | 34.03        | 25,80         | 18.43      | 8.04         | 22.15       | 10.22    | 9.63      | 24.76     | 14.99     | 46.65     | 276        |
| 17             | 22.34     | 21.64        | 26.96        | 21.33         | 17.55      | 6.01         | 16.82       | 4.33     | 5.15      | 15.73     | 18.98     | 44.67     | 222        |
| 18             | 25.12     | 24.51        | 26.96        | 16.85         | 14.04      | ,            | 10.88       | 5.81     | 3.65      | 15.73     | 17.98     | 48.63     | 210        |
| 19             | 19.95     | 19.58        | 23.45        | 16.05         | 9.01       | 3.98         | 10.15       | 7.28     | 3.65      | 14.75     | 17.98     | 46.65     | 192        |
| 20             | 26.51     | 27.39        | 22.28        | 15.25         | 7.71       | 6.69         | 7.96        | 8.02     | 3.65      | 13.77     | 16.99     | 52.59     | 209        |
| 21             | 30.69     | 27.39        | 17.61        | 15.25         | 6.41       | 8.04         | 7.96        | 6.54     | 3.65      | 15.73     | 15.99     | 52.59     | 208        |
| 22 ♦           | 32.08     | 24.51        | 22.28        | 12.04         | 5.76       | 8.72         | 7.23        | 5.07     | 3.65      | 15.73     | 16.99     | 48.63     | 203        |
| 23 (off peak)  | 24.52     | 16,37        | 17.39        | 13.89         | 5.88       | 5.34         | 5.88        | 3.72     | 2.64      | 12.43     | 12.43     | 36.55     | 157        |
| 24             | 26.92     | 12.43        | 14.62        | 15.35         | 5.34       | 5.34         | 4.26        | 3.72     | 2.64      | 12.43     | 13.89     | 32.42     | 149        |
| Total \$/Day   | 602       | 495          | 567          | 503           | 319        | 174          | 218         | 168      | 166       | 415       | 405       | 953       | 4,985      |
| Days/Month     | 31        | 28           | 31           | 30            | 31         | 30           | 31          | 31       | 30        | 31        | 30        | 31        | 365        |
| Total \$/Month | \$ 18,670 | \$ 13,848    | \$ 17,566    | \$ 15,093     | \$ 9,890   | \$ 5,227     | \$ 6,771    | \$ 5,216 | \$ 4,980  | \$ 12,871 | \$ 12,150 | \$ 29,529 | \$ 151,812 |

|                   |            |             |             |                |             |              |             |          |           | i i        |           |           |            |
|-------------------|------------|-------------|-------------|----------------|-------------|--------------|-------------|----------|-----------|------------|-----------|-----------|------------|
| J                 | GE Mod     | el 1.5sle   | s, 1.5-M\   | N WTG,         | 60-m (1     | 97-foot      | ) hub h     | eight    |           | Nominal    | Ownersh   | ip Case   |            |
|                   |            |             |             |                |             | - Portior    | 1 of Gros   | s Revenu | e Allocat | ted to ISD |           |           | 49%        |
|                   | Hourly Val | ue for Powe | r Used on S | ite or Sold fo | or Each Hou | rly Time Blo | ock, Each M | onth, \$ |           |            |           |           | Total \$   |
| Hour              | Jan        | Feb         | Mar         | Apr            | Мау         | Jun          | Jul         | Aug      | Sep       | Oct        | Nov       | Dec       | Per Time   |
|                   |            |             |             |                |             |              |             |          |           |            |           |           | Block      |
| 1                 | 38.05      | 23.18       | 23.60       | 18.02          | 9.11        | 6.30         | 5.95        | 6.02     | 00.00     | 20.90      | 21.30     | 57.77     | 230        |
| 2                 | 39.70      | 20.74       | 20.84       | 23.88          | 9.87        | 7.90         | 4.22        | 0.00     | 6.98      | 18.58      | 22.48     | 43.66     | 219        |
| 3                 | 34.75      | 25.62       | 22.22       | 26.52          | 8.34        | 7.90         | 5.09        | 4.27     | 6.98      | 20.90      | 17.75     | 46.01     | 226        |
| 4                 | 28.15      | 24.40       | 19.85       | 23.88          | 14.51       | 3.90         | 4.22        | 6.02     | 9.64      | 24.39      | 18.94     | 55.42     | 233        |
| 5                 | 23.67      | 21.96       | 20.84       | 26.52          | 14.51       | 4.70         | 0.00        | 6.90     | 11.41     | 23.23      | 21.30     | 62.47     | 238        |
| 9                 | 21.30      | 20.74       | 20.84       | 25.20          | 10.64       | 4.70         | 0.00        | 0.00     | 10.53     | 27.63      | 20.12     | 60.12     | 222        |
| 7                 | 21.30      | 15.87       | 19.85       | 23.88          | 11.40       | 6.30         | 0.00        | 5.15     | 6.98      | 22.07      | 22.48     | 48.36     | 204        |
| 8                 | 22.48      | 19.52       | 23.60       | 26.52          | 16.58       | 8.69         | 4.22        | 7.77     | 12.30     | 15.10      | 21.30     | 31.47     | 210        |
| 6                 | 29.80      | 19.52       | 24.99       | 26.52          | 21.76       | 11.09        | 6.81        | 9.52     | 13.18     | 17.42      | 20.12     | 33.21     | 234        |
| 10                | 34.75      | 19.52       | 27.76       | 31.81          | 21.76       | 11.89        | 8.54        | 11.27    | 14.38     | 19.74      | 23.67     | 46.01     | 271        |
| 11                | 39.70      | 21.96       | 38.41       | 30.49          | 27.54       | 17.29        | 12.00       | 12.15    | 12.30     | 26.01      | 26.50     | 46.01     | 310        |
| 12                | 43.58      | 30.73       | 44.01       | 34.92          | 33.32       | 18.37        | 16.36       | 15.39    | 15.58     | 29.25      | 24.85     | 60.12     | 366        |
| 13                | 36.40      | 40.93       | 44.01       | 36.70          | 30.43       | 16.21        | 23.37       | 18.94    | 15.58     | 35.72      | 26.50     | 50.72     | 376        |
| 14                | 39.70      | 37.53       | 51.48       | 42.05          | 26.10       | 16.21        | 31.06       | 20.12    | 14.38     | 32.48      | 29.80     | 60.12     | 401        |
| 15                | 38.05      | 40.93       | 44.01       | 33.13          | 27.54       | 11.09        | 31.06       | 18.94    | 15.58     | 30.86      | 28.15     | 57.77     | 377        |
| 16                | 31.45      | 40.93       | 40.27       | 30.49          | 21.76       | 9.49         | 26.17       | 12.15    | 11.41     | 29.25      | 17.75     | 55.42     | 327        |
| 17                | 26.50      | 25.62       | 31.91       | 25.20          | 20.73       | 7.10         | 19.87       | 5.15     | 6.10      | 18.58      | 22.48     | 53.07     | 262        |
| 18                | 29.80      | 29.02       | 31.91       | 19.91          | 16.58       | 00.00        | 12.86       | 6.90     | 4.33      | 18.58      | 21.30     | 57.77     | 249        |
| 19                | 23.67      | 23.18       | 27.76       | 18,96          | 10.64       | 4.70         | 12.00       | 8.65     | 4.33      | 17.42      | 21.30     | 55.42     | 228        |
| 20                | 31.45      | 32.43       | 26.37       | 18.02          | 9.11        | 7.90         | 9.40        | 9.52     | 4.33      | 16.26      | 20.12     | 62.47     | 247        |
| 21                | 36.40      | 32.43       | 20.84       | 18.02          | 7.57        | 9.49         | 9.40        | 7.77     | 4.33      | 18.58      | 18.94     | 62.47     | 246        |
| 22                | 38.05      | 29.02       | 26.37       | 14.22          | 6.81        | 10.29        | 8.54        | 6.02     | 4.33      | 18.58      | 20.12     | 57.77     | 240        |
| 23                | 39.70      | 27.32       | 23.60       | 18.02          | 8.34        | 7.90         | 9.40        | 6.02     | 4.33      | 19.74      | 20.12     | 62.47     | 247        |
| 24                | 43.58      | 20.74       | 19.85       | 19.91          | 7.57        | 7.90         | 6.81        | 6.02     | 4.33      | 19.74      | 22.48     | 55.42     | 234        |
| Total Revenue, \$ | 792        | 644         | 695         | 613            | 393         | 217          | 267         | 211      | 214       | 541        | 530       | 1,282     | 6,398      |
| Days/Month        | 31         | 28          | 31          | 30             | 31          | 30           | 31          | 31       | 30        | 31         | 30        | 31        | 365        |
| Total \$/Month    | \$ 24,552  | \$ 18,029   | \$ 21,550   | \$ 18,383      | \$ 12,169   | \$ 6,519     | \$ 8,288    | \$ 6,531 | \$ 6,408  | \$ 16,772  | \$ 15,897 | \$ 39,727 | \$ 194,825 |

Table 6-9. Total Value of Wind-Generated Power to ISD By Monthly Time Block for Typical Day, \$

|             | se        | 53%         | Total \$     | Per Time | Block         | 180   | 176   | 180   | 182   | 188   | 179   | 164   | 214         | 242   | 278   | 318   | 374   | 381   | 403   | 385   | 334   | 270   | 260   | 235   | 252   | 253   | 244   | 191           | 182   | 6,065        | 365        | \$ 184.676     |
|-------------|-----------|-------------|--------------|----------|---------------|-------|-------|-------|-------|-------|-------|-------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|-------|--------------|------------|----------------|
| ay, \$      | rship Ca: |             |              | Dec      | na            | 39.27 | 31.02 | 32,33 | 37.60 | 42.60 | 42.60 | 33.65 | 30.96       | 33.76 | 46,53 | 46.53 | 58.90 | 50.32 | 61.30 | 58.90 | 54.10 | 54.10 | 58,90 | 54.10 | 61.30 | 61.30 | 56.50 | 42.60         | 37.60 | 1,127        | 31         | \$ 34.931      |
| pical Da    | al Owne   | ä           |              | Nov      | BU            | 15.66 | 16.64 | 13.29 | 13.99 | 15.66 | 14.69 | 16.64 | 21.41       | 20.07 | 25.40 | 26.74 | 26.74 | 26.74 | 30.74 | 28.07 | 18.16 | 22.74 | 21.41 | 21.41 | 20.07 | 19.12 | 20.07 | 14.69         | 16.64 | 487          | 30         | \$ 14.603      |
| k for Ty    | Nomin     | ed to IML   |              | Oct      | Пa            | 15.66 | 13,99 | 15,66 | 18.59 | 17.61 | 20.54 | 16.64 | 15.99       | 17.87 | 19.75 | 26.31 | 30.24 | 36.40 | 32,86 | 31.55 | 30.24 | 18.81 | 18.81 | 17.87 | 16.93 | 18.81 | 18.81 | 14.69         | 14.69 | 499          | 31         | \$ 15.479      |
| me Bloc     |           | e Allocate  |              | Sep      | Пa            | 3.56  | 5,63  | 5.63  | 7.18  | 8.39  | 8.39  | 5.63  | 12.58       | 14.52 | 14.52 | 13.55 | 16.45 | 16.45 | 14.52 | 16.45 | 11.61 | 7.07  | 5.64  | 5,64  | 5.64  | 5.64  | 5.64  | 4.08          | 4.08  | 218          | 30         | \$ 6.554       |
| nthly Ti    |           | Revenue     | Month, \$    | Aug      | ВП            | 5.11  | 3.56  | 4,08  | 5.11  | 5,63  | 3.56  | 4.59  | 9.08        | 9.78  | 11.44 | 13.34 | 16.20 | 19.06 | 20.01 | 19.06 | 13.34 | 6.26  | 7.67  | 9.78  | 9.78  | 8.37  | 6.96  | 5.11          | 5.11  | 222          | 31         | \$ 6.882       |
| ) By Mo     | ıt        | of Gross    | lock, Each I | Jul      | Пa            | 5.11  | 4.08  | 4,59  | 4.08  | 3.56  | 3.04  | 3.04  | 5.52        | 7.62  | 9.01  | 13.25 | 17,04 | 23.83 | 30.43 | 30.43 | 27.79 | 19.87 | 13.25 | 13.25 | 10.41 | 10.41 | 9.01  | 7.70          | 5.63  | 282          | 31         | \$ 8.741       |
| to IMLE     | ub heigh  | - Portion   | ourly Time B | Jun      | na            | 5.63  | 6.66  | 7.18  | 4.08  | 4,59  | 4,59  | 5.63  | 9.63        | 12.26 | 12.26 | 17.51 | 18.38 | 16.63 | 16.63 | 12.26 | 10.51 | 7.69  | 4.46  | 5.75  | 8.34  | 10,51 | 10.51 | 7.18          | 7.18  | 226          | 30         | \$ 6.781       |
| d Power     | 80-m hr   |             | for Each Ho  | May      | na            | 7.70  | 9.09  | 7.70  | 12.59 | 12.59 | 60'6  | 9.79  | 16.79       | 23.48 | 23.48 | 28.16 | 34.07 | 30.91 | 25.82 | 28.16 | 23.48 | 22.31 | 16.79 | 10.92 | 10.08 | 8.00  | 7.38  | 7.18          | 7.18  | 393          | 31         | \$ 12.175      |
| enerated    | V WTG,    | 3,400       | old to IMLD  | Apr      | na            | 16.64 | 21.51 | 24.44 | 22.49 | 24.44 | 23.46 | 22.49 | 25.76       | 26.83 | 32.61 | 31.16 | 35.50 | 36.94 | 41.28 | 34.05 | 31.16 | 24.69 | 20.41 | 20.41 | 18.26 | 18.26 | 14.59 | 16.64         | 19.56 | 604          | 30         | \$ 18,107      |
| Wind-Ge     | , 1.5-MV  | cost, K\$   | e of Power S | Mar      | na            | 20.54 | 19.56 | 19.56 | 17.61 | 18.59 | 18.59 | 18,59 | 23.56       | 25.79 | 28.03 | 38.60 | 45.04 | 45.04 | 50.78 | 45.04 | 40.11 | 32.56 | 32.56 | 28.03 | 25.79 | 22.44 | 26.91 | 20.54         | 17.61 | 681          | 31         | \$ 21.125      |
| alue of \   | el 1.5sle | Installed C | Hourly Value | Feb      | na            | 16.64 | 14.69 | 19.56 | 17.61 | 15.66 | 14.69 | 11.89 | 19.72       | 19.72 | 19.72 | 22.08 | 31.70 | 41.87 | 38.16 | 41.87 | 41.87 | 27.58 | 30.33 | 23.45 | 33.08 | 33.08 | 28,95 | 20.54         | 14.69 | 599          | 28         | \$ 16.775      |
| Total V     | SE Mode   | Estimated   |              | Jan      | na            | 28.39 | 29.70 | 25.75 | 21.51 | 18.59 | 15.66 | 15,66 | 22.70       | 30.69 | 35.15 | 40.53 | 44.13 | 36.94 | 40.53 | 38.74 | 32.02 | 26.70 | 29.36 | 24.03 | 32.02 | 36.94 | 38.74 | 29.70         | 32.33 | 727          | 31         | \$ 22.522      |
| Table 6-10. |           |             |              | Hour     | High Season>> | 1     | 2     | 9     | 4     | 5     | 9     | 7     | 8 (on peak) | 6     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20    | 21    | 22 🔸  | 23 (off peak) | 24    | Total \$/Day | Days/Month | Total \$/Month |

| ß        |   |
|----------|---|
| ypical   |   |
| for T    |   |
| Block    |   |
| Time     |   |
| Monthly  |   |
| By       |   |
| 2        |   |
| Σ        |   |
| 5        |   |
| Power    |   |
| вd       |   |
| Generate |   |
| Wind     | 1 |
| ę        |   |
| Value    |   |
| . Total  |   |
| e-10.    | 1 |

| Table 6-1      | 1. Total    | Value of     | Wind-G      | enerate       | ed Powe     | er to ISC    | <b>DBy Mol</b> | nthly Tin | ne Bloc    | k for Ty  | pical Da   | ay, \$    |            |
|----------------|-------------|--------------|-------------|---------------|-------------|--------------|----------------|-----------|------------|-----------|------------|-----------|------------|
|                | GE Moc      | lel 1.5sl    | e, 1.5-M    | W WTG         | , 80-m I    | Jub heic     | ght            |           |            | Nomi      | nal Owne   | rship Ca  | se         |
|                |             |              |             |               |             | - Portion    | of Gross       | s Revenue | e Allocate | ed to ISD |            |           | 47%        |
|                | Hourly Valu | le for Power | Used on Sit | te or Sold fo | or Each Hou | rly Time Blo | ock, Each Mc   | onth, \$  |            |           |            |           | Total \$   |
| Hour           | Jan         | Feb          | Mar         | Apr           | May         | Jun          | Jul            | Aug       | Sep        | Oct       | Nov        | Dec       | Per Time   |
| High Season>>  | na          | na           | na          | na            | na          | na           | na             | na        | na         | na        | na         | na        | Block      |
| 1              | 42.41       | 25.63        | 25.73       | 19.92         | 10.07       | 7.68         | 7.54           | 7.64      | 5.39       | 22.97     | 23.40      | 61.95     | 260        |
| 2              | 44.38       | 22.63        | 24.51       | 25.76         | 11.90       | 9.09         | 6.02           | 5.32      | 8.51       | 20.51     | 24.86      | 48.94     | 252        |
| 3              | 38.48       | 30.14        | 24.51       | 29.26         | 10.07       | 9.79         | 6.78           | 6.09      | 8.51       | 22.97     | 19.86      | 51.01     | 257        |
| 4              | 32.14       | 27.13        | 22.07       | 26.92         | 16.47       | 5.56         | 6.02           | 7.64      | 10.86      | 27.26     | 20.90      | 59.32     | 262        |
| 5              | 27.77       | 24.13        | 23.29       | 29.26         | 16.47       | 6.27         | 5.25           | 8.41      | 12.70      | 25.83     | 23.40      | 67.21     | 270        |
| 9              | 23.40       | 22.63        | 23.29       | 28.09         | 11.90       | 6.27         | 4.49           | 5.32      | 12.70      | 30.12     | 21.94      | 67.21     | 257        |
| 7              | 23.40       | 18.32        | 23.29       | 26.92         | 12.81       | 7.68         | 4.49           | 6.86      | 8.51       | 24.40     | 24.86      | 53.09     | 235        |
| 8              | 24.86       | 21.55        | 25.73       | 28.09         | 18.30       | 10.50        | 6.02           | 9.95      | 13.76      | 17.44     | 23.40      | 33.94     | 234        |
| 6              | 33.60       | 21.55        | 28.17       | 29.26         | 25.60       | 13.36        | 8.30           | 10.73     | 15.87      | 19.49     | 21.94      | 37.02     | 265        |
| 10             | 38.48       | 21.55        | 30.62       | 35.56         | 25.60       | 13.36        | 9.83           | 12.54     | 15.87      | 21.54     | 27.77      | 51.01     | 304        |
| 11             | 44.38       | 24.13        | 42.16       | 33.98         | 30.70       | 19.08        | 14.45          | 14.63     | 14.81      | 28.69     | 29.23      | 51.01     | 347        |
| 12             | 48.31       | 34.64        | 49.20       | 38.71         | 37.15       | 20.04        | 18.58          | 17.77     | 17.99      | 32.98     | 29.23      | 64.58     | 409        |
| 13             | 40.45       | 45.76        | 49.20       | 40.29         | 33.70       | 18.13        | 25.99          | 20.90     | 17.99      | 39.69     | 29.23      | 55.17     | 416        |
| 14             | 44.38       | 41.70        | 55.47       | 45.01         | 28.15       | 18.13        | 33.18          | 21.94     | 15.87      | 35.83     | 33.60      | 67.21     | 440        |
| 15             | 42.41       | 45.76        | 49.20       | 37.13         | 30.70       | 13.36        | 33.18          | 20.90     | 17.99      | 34.40     | 30.69      | 64.58     | 420        |
| 16             | 35.06       | 45.76        | 43.81       | 33.98         | 25.60       | 11.45        | 30.31          | 14.63     | 12.70      | 32.98     | 19.86      | 59.32     | 365        |
| 17             | 29.23       | 30.14        | 35.56       | 26.92         | 24.32       | 8.38         | 21.67          | 6.86      | 7.73       | 20.51     | 24.86      | 59.32     | 296        |
| 18             | 32.14       | 33.14        | 35.56       | 22.25         | 18.30       | 4.86         | 14.45          | 8.41      | 6.17       | 20.51     | 23.40      | 64.58     | 284        |
| 19             | 26.32       | 25.63        | 30.62       | 22.25         | 11.90       | 6.27         | 14.45          | 10.73     | 6.17       | 19.49     | 23.40      | 59.32     | 257        |
| 20             | 35.06       | 36.15        | 28.17       | 19.92         | 10.99       | 9.09         | 11.36          | 10.73     | 6.17       | 18.46     | 21.94      | 67.21     | 275        |
| 21             | 40.45       | 36.15        | 24.51       | 19.92         | 8.72        | 11.45        | 11.36          | 9.18      | 6.17       | 20.51     | 20.90      | 67.21     | 277        |
| 22             | 42.41       | 31.64        | 29.40       | 15.91         | 8.04        | 11.45        | 9.83           | 7.64      | 6.17       | 20.51     | 21.94      | 61.95     | 267        |
| 23             | 44.38       | 31.64        | 25.73       | 19.92         | 9.39        | 9.79         | 11.36          | 7.64      | 6.17       | 21.54     | 21.94      | 67.21     | 277        |
| 24             | 48.31       | 22.63        | 22.07       | 23.42         | 9.39        | 9.79         | 8.30           | 7.64      | 6.17       | 21.54     | 24.86      | 59.32     | 263        |
| Total Revenue, | 882         | 720          | 772         | 679           | 446         | 261          | 323            | 260       | 261        | 600       | 587        | 1,399     | 7,190      |
| Days/Month     | 31          | 28           | 31          | 30            | 31          | 30           | 31             | 31        | 30         | 31        | <b>0</b> E | 31        | 365        |
| Total \$/Month | \$ 27,349   | \$ 20,163    | \$ 23,927   | \$ 20,360     | \$ 13,834   | \$ 7,825     | \$ 10,019      | \$ 8,063  | \$ 7,828   | \$ 18,604 | \$ 17,623  | \$ 43,360 | \$ 218,955 |

Table 6-11. Total Value of Wind-Generated Power to ISD By Monthly Time Block for Typical Day.

## Table 6-12. Summary of Annual Gross Revenue Projectionsfor Range of Expected WTG Ownership By IMLD and ISD

| (GE Model 1.5sle, 1.5- | ·MW WTG)            | Year:          | 2010           |  |  |  |  |
|------------------------|---------------------|----------------|----------------|--|--|--|--|
|                        |                     | Hub Height, m  |                |  |  |  |  |
|                        |                     | 60             | 80             |  |  |  |  |
| Gross Produc           | tion/Yr (MWh)>>:    | 2,580          | 3,019          |  |  |  |  |
| Ownership Pe           | ercentage, IMLD     | Gross Revenue/ | ′Yr, \$        |  |  |  |  |
|                        | 40.0%               | 119,068        | 139,378        |  |  |  |  |
| IIMLD                  | 45.0%               | 133,952        | 156,800        |  |  |  |  |
|                        | 50.0%               | 148,835        | 174,223        |  |  |  |  |
| Nomi                   | nal Case Ownership: | (51 %) 151,812 | (53%) 184,676  |  |  |  |  |
|                        | 55.0%               | 163,719        | 191,645        |  |  |  |  |
|                        | 60.0%               | 178,603        | 209,067        |  |  |  |  |
| Ownership Pe           | ercentage, ISD      | Gross Revenue/ | ′Yr, \$        |  |  |  |  |
|                        | 40.0%               | 159,041        | 186,344        |  |  |  |  |
|                        | 45.0%               | 178,921 209,63 |                |  |  |  |  |
| Nomi                   | nal Case Ownership: | (49%) 194,825  | (47 %) 218,955 |  |  |  |  |
|                        | 50.0%               | 198,801        | 232,930        |  |  |  |  |
| 12D                    | 55.0%               | 218,681        | 256,223        |  |  |  |  |
|                        | 60.0%               | 238,562        | 279,516        |  |  |  |  |

Notes: For other ownership percentages for 2 hub heights

(1) IMLD Gross revenue @ 60m = \$297,671 x fractional ownership

(2) IMLD Gross revenue @ 80m = 348,445 x fractional ownership

(3) ISD Gross revenue @ 60m = \$397,603 x fractional ownership

(4) ISD Gross revenue @ 80m = \$465,861 x fractional ownership

In Tables 6-13 and 6-14, we have included the projected 20-year O&M costs, derived from the model and applied to the GE Model 1.5sle with a 60-m or 80-m hub height, respectively. We estimate that the annual O&M costs for a WTG with an 80-m hub height would be 3 percent greater per year (vs. a WTG with a 60-m hub height), but the output per year would be 17 percent greater (i.e., 3,019 MWh/year vs. 2,580 MWh/year). Thus, the net effect of using a WTG with an 80-m hub height is that the annual O&M costs per MWh would be approximately 89 percent of those for a WTG with a 60-m hub height.

The O&M cost projections shown assume a five-year warranty period, 2.5-percent inflationary cost increases in labor and parts each year, and nominal costs for site management and data reporting. The tables indicate the operations and scheduled maintenance costs as the first line and the unscheduled costs as the second line. The third line is the total of the operations, scheduled and unscheduled costs. The fourth line is the annual O&M cost divided by the nominal, projected net annual energy production for the Ipswich site. We have listed the levelized annual O&M costs for each case at the bottom of the table.

Two factors should be noted in Tables 6-13 and 6-14:

- 1)There are no unscheduled O&M costs in the first five years due to the assumed five-year warranty on the full installation (including balance of plant), the cost for which are assumed to be included in the purchase price of the WTG.
- 2) The unscheduled O&M costs begin in year six and become greater than the scheduled costs after year ten, when large, costly items such as the generator or gearbox need repairs or replacement.

| Table 6-13. O&M Cost Projections         | s by Year, sir | Igle GE IV | 10del 1.5 | sie, 60-m | nub ne | ignt (5-ye | ar warrar | ity)   |        |        |
|------------------------------------------|----------------|------------|-----------|-----------|--------|------------|-----------|--------|--------|--------|
| YEAR>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | 1              | 2          | 3         | 4         | 5      | 6          | 7         | 8      | 9      | 10     |
| Total Scheduled Maint. Cost/Yr, \$       | 26,010         | 26,660     | 27,327    | 28,010    | 28,710 | 29,428     | 30,164    | 30,918 | 31,691 | 32,483 |
| Total Unscheduled Maint. Cost/Yr, \$     | -              | -          | -         | -         | -      | 9,209      | 10,334    | 12,813 | 17,678 | 22,520 |
| Total Maintenance Cost/Yr, k\$           | 26,010         | 26,660     | 27,327    | 28,010    | 28,710 | 38,637     | 40,498    | 43,731 | 49,368 | 55,003 |
| Tot. Annual Cost, \$/MWh                 | 10.08          | 10.33      | 10.59     | 10.86     | 11.13  | 14.98      | 15.70     | 16.95  | 19.14  | 21.32  |
|                                          |                |            |           |           |        |            |           |        |        |        |

| Table $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $1^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , $0^{-1}$ , |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| YEAR>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | 11        | 12          | 13     | 14             | 15     | 16     | 17     | 18     | 19     | 20     |
|------------------------------------------|-----------|-------------|--------|----------------|--------|--------|--------|--------|--------|--------|
| Total Scheduled Maint. Cost/Yr, \$       | 33,295    | 34,127      | 34,981 | 35,855         | 36,751 | 37,670 | 38,612 | 39,577 | 40,567 | 41,581 |
| Total Unscheduled Maint. Cost/Yr, \$     | 26,533    | 30,010      | 32,789 | 38,264         | 42,482 | 42,791 | 44,926 | 47,944 | 50,086 | 51,821 |
| Total Maintenance Cost/Yr, \$            | 59,828    | 64,137      | 67,769 | 74,119         | 79,233 | 80,461 | 83,538 | 87,521 | 90,652 | 93,402 |
| Tot. Annual Cost, \$/MWh                 | 23.19     | 24.86       | 26.27  | 28.73          | 30.71  | 31.19  | 32.38  | 33.92  | 35.14  | 36.20  |
| Net Present Value of O&M Costs, \$:      | \$569,844 | Discount I  | Rate:  | 6.00%<br>4 50% |        |        |        |        |        |        |
| Levelized O&M Cost at 60-m, \$/MWh       | \$43,807  | interest ne |        | 4.50%          |        |        |        |        |        |        |

|                                          |                    |             |               |                | Cost Premiu | m for 80-m v | s 60 m hub ł | neight: |        | 3.0%   |
|------------------------------------------|--------------------|-------------|---------------|----------------|-------------|--------------|--------------|---------|--------|--------|
| Table 6-14. O&M Cost Projections         | s by Year, si      | ingle GE M  | lodel 1.5 s   | sle, 80-m      | hub heig    | ht (5-year   | warranty     | /)      |        |        |
| YEAR>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | 1                  | 2           | 3             | 4              | 5           | 6            | 7            | 8       | 9      | 10     |
| Total Scheduled Maint. Cost/Yr, \$       | 26,790             | 27,460      | 28,147        | 28,850         | 29,571      | 30,311       | 31,069       | 31,845  | 32,641 | 33,457 |
| Total Unscheduled Maint. Cost/Yr, \$     | -                  | -           |               | -              | -           | 9,486        | 10,644       | 13,197  | 18,208 | 23,196 |
| Total Maintenance Cost/Yr, k\$           | 26,790             | 27,460      | 28,147        | 28,850         | 29,571      | 39,797       | 41,713       | 45,043  | 50,850 | 56,653 |
| Tot. Annual Cost, \$/MWh                 | 8.87               | 9.10        | 9.32          | 9.56           | 9.80        | 13.18        | 13.82        | 14.92   | 16.84  | 18.77  |
|                                          |                    |             |               |                |             |              |              |         |        |        |
| YEAR>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | 11                 | 12          | 13            | 14             | 15          | 16           | 17           | 18      | 19     | 20     |
| Total Scheduled Maint. Cost/Yr, \$       | 34,294             | 35,151      | 36,030        | 36,931         | 37,854      | 38,800       | 39,770       | 40,765  | 41,784 | 42,828 |
| Total Unscheduled Maint. Cost/Yr, \$     | 27,329             | 30,910      | 33,772        | 39,412         | 43,756      | 44,075       | 46,274       | 49,382  | 51,588 | 53,376 |
| Total Maintenance Cost/Yr, \$            | 61,622             | 66,061      | 69,802        | 76,342         | 81,610      | 82,875       | 86,044       | 90,147  | 93,372 | 96,204 |
|                                          |                    | 04.00       | 00.40         | 25.20          | 07.00       | 27.45        | 20 50        | 20.96   | 30.03  | 31.87  |
| Tot. Annual Cost, \$/MWh                 | 20.41              | 21.88       | 23.12         | 25.29          | 27.03       | 27.45        | 20.00        | 29.00   | 30.93  | 51.07  |
| Net Present Value of O&M Costs, \$:      | 20.41<br>\$586,939 | Discount Ra | 23.12<br>ate: | 6.00%<br>4.50% | 27.03       | 27.45        | 20.30        | 29.00   | 50.95  | 51.07  |

There may be some minimal IMLD costs for managing the site and the O&M provider's activities. Based on the projections indicated in the tables, and the economic assumptions listed, the levelized, annual O&M costs are \$43,807 per year and \$45,122 per year for the 60-m and 80-m hub-height WTGs, respectively. The projections that we have developed are estimates and will vary with several factors, the most important of which are the warranty costs and the contracted costs and provisions related to the O&M provider. Based on the current market conditions for WTGs, we estimate that annual O&M costs could vary by -10/+25% in the first eight to ten years of project life, but may vary by -20/+35% in the later years due to (a) the need for a large crane for major overhauls and (2) the potential that the O&M provider may have to travel a great distance to carry out major repair work.

### 7. SUMMARY OF ECONOMIC PROJECTIONS

In Tables 7-1 and 7-2, we have assembled the key 20-year cash flow projections for either a 60-m or 80-m hub-height WTG, respectively. The results are for the nominal ownership percentages applicable to IMLD and ISD that are listed in Tables 6-8 through 6-11. The right-hand column in each table summarizes the net cash flow after paying constant annual principal payments on the bonds for both entities and the interest on the bonds in the case of IMLD. There is a zero bond interest payment on the ISD bonds because the interest will be covered by the <u>Clean Renewable Energy Bonds</u> (CREBs) for which the ISD was approved – up to a bonding limit of \$1.6M. The results that we show in Tables 7-1 and 7-2 assume that ISD funds the project at its bonding limit in each case.

The installed project costs were estimated at 3.4M\$ by Meridian for a WTG with an 80-m hub height. We estimated that the installed cost of a WTG with a 60-m hub height would be approximately \$3.24 million. This reduction is reflective of a less costly foundation, tower and installation crane. The percentage of the project that is allocated to ISD and IMLD varies with project cost, because we have assumed that ISD will pay \$1.6-million of the project cost - irrespective of the total project cost.

The notes at the bottom-left portion of each table explain that the actual gross value of the wind-generated power to each entity is determined by the simulation that takes into account the hourly and monthly availability of the wind power and the applicable electricity cost structure for each entity.

Below each table (on the right) we have also computed the Net Present Value (NPV) of the project to each entity after taking account of O&M costs, interest on bonds (IMLD only), and principal payments on the bonds. Note the significantly higher value to the ISD portion of the project. This is due to two important factors that govern the economics for ISD:

1) The 43-percent (average) higher value of the power to ISD compared to IMLD, and

2) The inclusion of CREBs bond interest coverage by ISD.

#### 8. CONCLUSIONS

We have reached the following conclusions:

**<u>Project Output and Value</u>**. The projected WTG energy levels and capacity factors for each hub height studied are reflective of a low wind-speed site. The data indicate that the site will produce modest amounts of energy. However, due to the fact that the energy offsets the retail purchase of power by the ISD, and the IMLD rates are relatively high and projected to go higher each year, the project could produce a high economic value.

|                 | Table 7-                       | 1. Summal                 | ry of 20-Year                  | Cash Flow                | s for Joint          | IMLD-ISD \         | Wind Pow                       | er Pro                          | ject on T                 | own Farn                    | n Road                 |                   |             |                          |                                              |            |              |                              |                      |
|-----------------|--------------------------------|---------------------------|--------------------------------|--------------------------|----------------------|--------------------|--------------------------------|---------------------------------|---------------------------|-----------------------------|------------------------|-------------------|-------------|--------------------------|----------------------------------------------|------------|--------------|------------------------------|----------------------|
|                 | Key Ass                        | sumptions                 |                                |                          |                      |                    |                                | 60-met                          | er (197-fc                | oot) hub h                  | height                 |                   |             |                          |                                              |            |              |                              |                      |
|                 | WTG Prod<br>Capital Co         | duction, MWI<br>osts:     | h/Year<br>ISD Share            | 2,580<br>\$1.600.000     | 49%                  |                    |                                | NTG Tyr<br>NTG Hu               | pe: Genera<br>b Heiaht:   | I Electric ((               | 3E) Model 1,           | 5sle, 1.5-M       | V unit with | n 77-m dian<br>60 meters | neter.                                       |            |              |                              |                      |
|                 |                                |                           | IMLD Share                     | \$1,640,000              | 51%                  |                    |                                | /alue of                        | Renewable<br>ant Value F  | e Energy C                  | ertificates, \$/       | kWh:<br>of:       |             | 0.02                     |                                              |            |              |                              |                      |
| ·               | ISD Gross<br>IMLD Gros         | s WTG Rever<br>ss WTG Rev | nue/Year<br>enue/Year          | \$ 194,825<br>\$ 151,812 |                      |                    |                                | ver ries<br>Annual I<br>nterest | nflation on<br>Rate on 20 | Utility Rati<br>-yr IMLD Bo | es:<br>ond:            | 5                 |             | 2.50%<br>5.0%            |                                              |            |              |                              |                      |
|                 |                                | Avg. Ra                   | tes (\$/kWh),<br>Volue of Wind |                          |                      |                    | ISD Shar                       | ور                              |                           |                             | a e de Meri            |                   |             |                          | ß                                            |            |              | Net Value to                 | Net Value to         |
|                 |                                | Power to E hours          | Each Entity (all-              | Annual Ene               | agy Product          | ion (kWh)          | Energ)<br>Producti<br>Credited | 5 5 2                           |                           | ss Econom<br>Vind Power     | lic value of           | 0                 | &M Costs    |                          | Payments<br>on Bonds                         | Bon        | yments<br>ds | ISD (Cash<br>Flow)           | IMLD (cash<br>flow)  |
| Project<br>Year | Fiscal<br>Year <sup>(2</sup> ) | ISD                       | IMLD                           | Total                    | ISD Share I<br>(kWh) | MLD Share<br>(KWh) | Avoided<br>Purchase<br>(KWh)   | Sales<br>to<br>IMLD             | To ISD                    | To IMLD                     | Fotal Value<br>to Town | Total<br>Cost Per | SD Share    | IMLD<br>Share            | Principal<br>(CREBs<br>to cover<br>interest) | Interest   | Principal    | Include<br>CREBs, No<br>RECs | No CREBs,<br>No RECs |
| -               | 2009                           | Not App                   | olicable                       | \$0                      | So                   | ŝ                  | 8                              | 8                               | 8                         | ŝ                           | \$0                    | ľ                 | ľ           | Ö                        | \$80.000                                     | \$82.000   | \$82.000     | -80.000                      | -\$164.000           |
| 2               | 2010                           | \$0.1544                  | \$0.1141                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$194,825                 | \$151,812                   | \$346,637              | 26,790            | \$ 13,230   | \$13,561                 | \$80,000                                     | 77,900     | \$82,000     | 101,595                      | -\$21,649            |
| 3               | 2011                           | \$0.1583                  | \$0.1170                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$199,696                 | \$155,607                   | \$355,303              | 27,460            | \$ 13,561   | \$13,900                 | \$80,000                                     | 73,800     | \$82,000     | 106,135                      | -\$14,092            |
| 4               | 2012                           | \$0.1622                  | \$0.1199                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$204,688                 | \$159,497                   | \$364,185              | 28,147            | \$ 13,900   | \$14,247                 | \$80,000                                     | 69,700     | \$82,000     | 110.788                      | -\$6,450             |
| ۍ               | 2013                           | \$0.1663                  | \$0.1229                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$209,805                 | \$163,485                   | \$373,290              | 28,850            | \$ 14,247   | \$14,603                 | \$80,000                                     | 65,600     | \$82,000     | 115,558                      | \$1,282              |
| 9               | 2014                           | \$0.1704                  | \$0.1259                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$215,050                 | \$167,572                   | \$382,622              | 29,571            | \$ 14,603   | \$14,968                 | \$80,000                                     | 61,500     | \$82,000     | 120,447                      | \$9,104              |
| 7               | 2015                           | \$0.1747                  | \$0.1291                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$220,427                 | \$171,761                   | \$392,188              | 39,797            | \$ 19,653   | \$20,144                 | \$80,000                                     | 57,400     | \$82,000     | 120,774                      | \$12,217             |
| 8               | 2016                           | \$0.1791                  | \$0.1323                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$225,937                 | \$176,055                   | \$401,993              | 41,713            | \$ 20,599   | \$21,114                 | \$80,000                                     | 53,300     | \$82,000     | 125,338                      | \$19,641             |
| 6               | 2017                           | \$0.1835                  | \$0.1356                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$231,586                 | \$180,457                   | \$412,042              | 45,043            | \$ 22,243   | \$22,799                 | \$80,000                                     | 49,200     | \$82,000     | 129,342                      | \$26,457             |
| 0               | 2018                           | \$0.1881                  | \$0.1390                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$237,375                 | \$184,968                   | \$422,344              | 50,850            | \$ 25,111   | \$25,739                 | \$80,000                                     | 45,100     | \$82,000     | 132,264                      | \$32,130             |
| ŧ               | 2019                           | \$0.1928                  | \$0.1425                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$243.310                 | \$189,592                   | \$432,902              | 56,653            | \$ 27,977   | \$28,676                 | \$80,000                                     | 41,000     | \$82,000     | 135,333                      | \$37,916             |
| 12              | 2020                           | \$0.1976                  | \$0.1461                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$249,392                 | \$194,332                   | \$443,725              | 61,622            | \$ 30,431   | \$31,192                 | \$80,000                                     | 36,900     | \$82,000     | 138,962                      | \$44,241             |
| 13              | 2021                           | \$0.2026                  | \$0.1497                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$255,627                 | \$199,190                   | \$454,818              | 66.061            | \$ 32,623   | \$33,438                 | \$80,000                                     | 32,800     | \$82,000     | 143.004                      | \$50,952             |
| 14              | 2022                           | \$0.2077                  | \$0.1535                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$262,018                 | \$204,170                   | \$466,188              | 69,802            | \$ 34,470   | \$35,332                 | \$80,000                                     | 28,700     | \$82,000     | 147.548                      | \$58,138             |
| 15              | 2023                           | \$0.2128                  | \$0.1573                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$268,568                 | \$209.275                   | \$477,843              | 76,342            | \$ 37,700   | \$38,642                 | \$80,000                                     | 24,600     | \$82,000     | 150,869                      | \$64,032             |
| 16              | 2024                           | \$0.2182                  | \$0.1612                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$275,283                 | \$214,506                   | \$489,789              | 81,610            | \$ 40,301   | \$41,309                 | \$80,000                                     | 20,500     | \$82,000     | 154,981                      | \$70,698             |
| 17              | 2025                           | \$0.2236                  | \$0.1653                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$282,165                 | \$219,869                   | \$502,034              | 82,875            | \$ 40,926   | \$41,949                 | \$80,000                                     | 16,400     | \$82,000     | 161,239                      | \$79,520             |
| 18              | 2026                           | \$0.2292                  | \$0.1694                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$289,219                 | \$225,366                   | \$514,585              | 86,044            | \$ 42,491   | \$43,553                 | \$80,000                                     | 12,300     | \$82,000     | 166.728                      | \$87,513             |
| 19              | 2027                           | \$0.2349                  | \$0.1736                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$296,449                 | \$231,000                   | \$527,449              | 90,147            | \$ 44,517   | \$45,630                 | \$80,000                                     | 8,200      | \$82,000     | 171,932                      | \$95,170             |
| 20              | 2028                           | \$0.2408                  | \$0.1780                       | 2,580,000                | 1,274,074            | 1,305,926          | 1,274,074                      | 0                               | \$303,861                 | \$236,775                   | \$540,635              | 93,372            | \$ 46,110   | \$47,262                 | \$80,000                                     | 4,100      | \$82,000     | 177,751                      | \$103,413            |
| Notes: (1       | () Compute                     | ed value of w             | vind power to ea               | ach entity is r          | elated to whe        | en wind powe       | er is availab                  | le and c                        | oincident,                | historic ele                | ectric rates th        | nat vary ea       | ÷           |                          |                                              | Vet Preser | nt Value to  | ISD:                         | \$1,299,609          |
|                 | month (f                       | or ISD) and               | by time of use (I              | monthly and              | daily) for IML       | D. Thus, the       | avg. value                     | of WTG                          | power will                | not e qual a                | average rates          | s listed in c     | olumns 3    | and 4.                   | _                                            | Vet Preser | nt Value to  | IMLD:                        | \$140,501            |
| 0               | 2) Fiscal-ye                   | ear 2009 is fi            | iom July 1, 2009               | ) through Jun            | e 30, 2010.          |                    |                                |                                 |                           |                             |                        |                   |             |                          | •                                            |            |              |                              |                      |

. ĩ ŝ 4 1

|            | Table 7-:              | 2. Summa               | ary of 20-Year                                                 | r Cash Flov              | vs for Joir        | nt IMLD-IS     | D Wind Pov                 | ver Pro                | piect on 7              | Town Farr                 | n Road                       |                    |            |               |                                 |                  |             |                                        |                                   |
|------------|------------------------|------------------------|----------------------------------------------------------------|--------------------------|--------------------|----------------|----------------------------|------------------------|-------------------------|---------------------------|------------------------------|--------------------|------------|---------------|---------------------------------|------------------|-------------|----------------------------------------|-----------------------------------|
|            | Key Ass                | umptions               |                                                                |                          |                    |                | 8                          | D-meter                | r (262-fo               | ot) hub he                | ight                         | Γ                  |            |               |                                 |                  |             |                                        |                                   |
|            | WTG Prod               | luction, MV            | Vh/Year<br>Iso shore                                           | 3,019                    | ł                  |                | <b> </b> > :               | TG Type                | : General               | Electric (GE              | () Model 1.5                 | isle, 1.5-M        | W unit wit | h 77-m dia    | neter.                          |                  |             |                                        |                                   |
|            | capital co             | 3818                   | INI D Charte                                                   | 000'000'1¢               | 41%                |                | × :                        |                        | Height:                 |                           |                              | 1                  | ~          | 0 meters      |                                 |                  |             |                                        |                                   |
|            |                        |                        | Total Cost. \$                                                 | \$3.400.000              | %.CC               |                | 2                          | ilue of R<br>et Preser | enewable<br>nt Value Bo | Energy Cer<br>seed on Dis | tificates, \$/<br>count Rate | kWh:               |            | 0.02<br>6 00% |                                 |                  |             |                                        |                                   |
|            | ISD Gross<br>IMLD Gros | WTG Reve<br>ts WTG Rev | nue/Year<br>venue/Year                                         | \$ 218,955<br>\$ 184.676 |                    |                |                            | inual Inf              | lation on L             | Jtility Rates             |                              | 5                  |            | 2.50%         |                                 |                  |             |                                        |                                   |
|            |                        | Avg. Ra                | ttes (\$/kWh),                                                 |                          |                    |                | ISD Share                  |                        |                         |                           | -                            |                    |            | 0.00          | 5                               |                  | F           |                                        |                                   |
|            |                        | Average<br>Power to I  | value or Wind<br>Each Entity (all-<br>s. rates) <sup>(1)</sup> | Annual Ene               | rgy Product        | ion (kWh)      | Energy Produ<br>Credited t | ction A                | nnual Gros<br>of M      | ss Economi<br>/ind Power  | c Value                      | 0                  | &M Costs   |               | Payments<br>on Bonds            | IMLD Pay<br>Bond | ments<br>ds | ver value to n<br>ISD (Cash 1<br>Flow) | et Value to<br>MLD (cash<br>flow) |
|            | Fieral                 |                        |                                                                |                          |                    | MLD            | Avoided S                  | ales                   |                         |                           | Total                        | Total              |            |               | Principal                       |                  |             | Include                                |                                   |
| Year       | Year <sup>(2)</sup>    | <u>S</u>               | IMLD                                                           | Total                    | ISU Share<br>(kWh) | Share<br>(kWh) | Purchase<br>(kWh) II       |                        |                         | O IMLD                    | alue to Co<br>Town           | ost Per 15<br>Year | SD Share   | Share         | (CREBs to<br>cover<br>interest) | Interest         | Principal ( | CREBs, No<br>RECs                      | No CREBS,<br>No RECS              |
| -          | 2009                   | Not Ap                 | plicable                                                       | \$0                      | \$0                | \$0            | \$0                        | 8                      | \$0                     | \$0                       | \$0                          | 0                  | 0          | 0             | \$80,000                        | 000'06\$         | \$90,000    | -80.000                                | -\$180.000                        |
| 2          | 2010                   | \$0.1544               | \$0.107                                                        | 3,019,000                | 1,420,706          | 1,598,294      | 1,420,706                  | 0                      | 2 18,955 \$             | \$184,676 \$              | 403,631                      | 26,790 \$          | 12,607     | \$ 14,183     | \$80,000                        | 85.500           | \$90.000    | 126.348                                | -\$5.007                          |
| ~          | 2011                   | \$0.1583               | \$0.1097                                                       | 3,019,000                | 1,420,706          | 1,598,294      | 1,420,706                  | 0                      | 224,429                 | \$189,293                 | 413,722                      | 27,460 \$          | 12,922     | 5 14,538      | \$80,000                        | 81.000           | \$90,000    | 131.506                                | \$3,755                           |
| 4          | 2012                   | \$0.1622               | \$0.1124                                                       | 3,019,000                | 1,420,706          | 1,598,294      | 1,420,706                  | 0                      | 230,040 \$              | s194,025 \$               | 424,065                      | 28,147 \$          | 13,245     | 5 14,901      | \$80,000                        | 76,500           | \$90,000    | 136.794                                | \$12.624                          |
| 2          | 2013                   | \$0.1663               | \$0.1152                                                       | 3,019,000                | 1,420,706          | 1,598,294      | 1,420,706                  | 0                      | 235,791 \$              | \$198,876                 | 434,666                      | 28,850 \$          | 13,577     | \$ 15,274     | \$80,000                        | 72,000           | \$90,000    | 142.214                                | \$21,602                          |
| 9          | 2014                   | \$0.1704               | \$0.1181                                                       | 3,019,000                | 1,420,706          | 1,598,294      | 1,420,706                  | 8                      | 241,685 \$              | \$203,848                 | 445,533                      | 29,571 \$          | 13,916     | 5 15,655      | \$80,000                        | 67,500           | \$90,000    | 147,769                                | \$30.692                          |
| ~          | 2015                   | \$0.1747               | \$0.1211                                                       | 3,019,000                | 1,420,706          | 1.598,294      | 1,420,706                  | 8                      | 247,727                 | 208,944 \$                | 456,671                      | 39,797 \$          | 18,728     | \$ 21,069     | \$80,000                        | 63,000           | \$90,000    | 149,000                                | \$34,875                          |
|            | 2016                   | \$0.1791               | \$0.1241                                                       | 3,019,000                | 1,420,706          | 1,598,294      | 1,420,706                  | 8                      | 253,921                 | 214,168 \$                | 468,088                      | 41,713 \$          | 19,630     | \$ 22,083     | \$80,000                        | 58,500           | \$90,000    | 154,291                                | \$43,584                          |
| 5          | 2017                   | \$0.1835               | <b>\$0.1272</b>                                                | 3,019,000                | 1,420,706          | 1,598,294      | 1,420,706                  | 0                      | 260,269 \$              | 219,522 \$                | 479,790                      | 45.043 \$          | 21,197     | \$ 23,846     | \$80,000                        | 54,000           | \$90,000    | 159,072                                | \$51,676                          |
| 2          | 2018                   | \$0.1881               | \$0.1304                                                       | 3,019,000                | 1,420,706          | 1,598,294      | 1,420,706                  | 0                      | 266,775 \$              | 225,010 \$                | 491,785                      | 50,850 \$          | 23,929     | \$ 26,920     | \$80,000                        | 49,500           | \$90,000    | 162.846                                | \$58,589                          |
| =          | 2019                   | \$0.1928               | \$0.1336                                                       | 3,019,000                | 1,420,706          | 1,598,294      | 1,420,706                  | 0                      | 273,445 \$              | 230,635 \$                | 504,080                      | 56,653 \$          | 26,660     | \$ 29,993     | \$80,000                        | 45,000           | \$90,000    | 166,785                                | \$65,642                          |
| 71         | 2020                   | 30.19/6                | \$0.1370                                                       | 3,019,000                | 1,420,706          | 1,598,294      | 1,420,706                  | 0                      | 280,281 \$              | 236,401 \$                | 516,682                      | 61,622 \$          | 28,999     | 32,624        | \$80,000                        | 40,500           | \$90,000    | 171,282                                | \$73,277                          |
| 2          | 2021                   | 07N7.UK                | 30.1404                                                        | 3,019,000                | 1,420,706          | 1.598.294      | 1,420,706                  | 3                      | 287,288 \$              | 242,311 \$                | 529,599                      | 66,061 \$          | 31,088     | 34,974        | \$80,000                        | 36,000           | 290,000     | 176,200                                | \$81,337                          |
| 42         | 7707                   | 110700                 | \$0.1438                                                       | 3,019,000                | 1,420,706          | 1,598,294      | 1,420,706                  |                        | 294,470 5               | 248,369 \$                | 542,839 6                    | 59,802 \$          | 32,848     | 36,954        | \$80,000                        | 31,500           | \$90,000    | 181,622                                | \$89,915                          |
| 2          | 1000                   | 0717.04                | \$141.0¢                                                       | 3,019,000                | 1,42U,/UD          | 1,208C,144     | 1,420,/06                  | Ť                      | 501,832 \$              | 254,578 \$                | 556,410                      | 76,342 \$          | 35,926     | 40,416        | \$80,000                        | 27,000           | \$90,000    | 185,906                                | \$97,161                          |
| 2          | 2024                   | \$0.2182               | \$0.1512                                                       | 3,019,000                | 1,420,706          | 1,598,294      | 1,420,706                  | 0                      | 309,378 \$              | 260,942 \$                | 570,320                      | 81,610 \$          | 38,405     | 43,205        | \$80,000                        | 22,500           | \$90,000    | 190,973                                | \$105,237                         |
|            | C202                   | \$0,222.04             | \$0.1550                                                       | 3,019,000                | 1,420,706          | 1.598,294      | 1,420,706                  | 8                      | 317,112 \$              | 267,466 \$!               | 584,578                      | 32,875 \$          | 39,000     | 43,875        | \$80,000                        | 18,000           | \$90,000    | 198,112                                | \$115,591                         |
| 8          | 2020                   | 50.2292                | \$0.1588                                                       | 3,019,000                | 1,420,706          | 1,598,294      | 1,420,706                  | 8                      | 325,040 \$              | 274,153 \$5               | 599,192                      | 86,044 \$          | 40,491     | 45,553        | \$80,000                        | 13,500           | \$90,000    | 204,549                                | \$125,100                         |
| PL 5       | 1202                   | \$0.2349               | \$0.1628                                                       | 3,019,000                | 1,420,706          | 1,598,294      | 1,420,706                  | <del>ک</del>           | 333,166 \$              | 281,006 \$6               | 514,172                      | 90,147 \$          | 42,422     | 47,725        | \$80,000                        | 0000'6           | \$90,000    | 210,744                                | \$134,281                         |
| 20         | 2028                   | \$0.2408               | \$0.1669                                                       | 3,019,000                | 1,420,706          | 1,598,294      | 1,420,706                  | 8                      | 41,495 \$               | 288,032 \$6               | \$29,527                     | 33,372 \$          | 43,940     | 49,432        | \$80,000                        | 4,500            | \$90,000    | 217,555                                | \$144,099                         |
| Notes: (1) | Computed v             | value of wil           | nd power to eac                                                | h entity is rel          | ated to whe        | n wind pow     | er is available            | and coi                | ncident, hi             | istoric elect             | nic rates th                 | at vary ea         | cł         |               | Z                               | et Present       | Value to I  | SD: \$                                 | 1,618,567                         |
| 1          | month (for I           | (SD) and by            | r time of use (m                                               | onthly and da            | ily) for IMLI      | D. Thus, the   | avg. value of              | WTG po                 | wer will n              | ot equal ave              | erage rates                  | listed in c        | columns 3  | and 4.        | Z                               | et Present       | Value to I  | MLD:                                   | \$397.441                         |
| (2)        | Fiscal-year            | 2009 is fro            | m July 1, 2009 t                                               | hrough June              | 30, 2010.          |                |                            |                        |                         |                           | ,                            |                    |            |               | 1                               |                  |             |                                        |                                   |

**The WTG**. Because the GE Model 1.5sle WTG is appropriate for low wind speed sites (i.e., a large rotor diameter compared to its rated power and a good power curve), the annual capacity factors and revenue projections are greater than for several other candidate WTGs. A WTG with the 80-m hub height produces approximately 439 MWh more energy per year than a WTG with a 60-m hub height. For the nominal ownership case summarized in Table 6-12, on average the taller tower produces the estimated total annual revenue increase of \$56,994, where \$32,864 of the revenue increase can be allocated to IMLD and \$24,130 of the increase to ISD. *Based on these estimates, the added tower height appears to have roughly a three-year simple payback.* Therefore, it will be necessary to examine carefully the WTG installed costs and other issues associated with the taller WTG - to assess whether the added revenue derived from the taller WTGs (and potentially greater permitting obstacles), justifies the added cost.

*Long-Term Operation and Maintenance (O&M) Issues*. We estimate that the WTGs considered can be maintained for an annual, levelized cost of approximately \$43k to \$46k (\$16.67/MWh to \$15.24/MWh) for the 60 and 80-m hub height WTGs, respectively.

## 9. RECOMMENDATIONS

We recommend the following:

- 1)As soon as possible, IMLD and ISD start to work closely with the MMWEC to secure access to a GE Model 1.5sle WTG at the most preferred pricing and availability.
- 2)Due to the tight schedule for CREBs availability, Ipswich should initiate detailed project planning within the various boards and town committees and establish the key parameters and requirements of the permitting process.
- 3)Determine how the Town will be able to incorporate any requirements for project bidding with the desire to work with MMWEC in obtaining a WTG.
- 4)Because pricing from the recommended suppliers may be high due to market conditions at the time of the bid, we recommend that IMLD also discuss the potential of a bid from Vestas (that supplied two WTGs at Hull, MA) or such other emerging WTG suppliers as Gamesa (from Spain, office in Pennsylvania) and Siemens (formerly Bonus, from Denmark), both of which supply WTGs in the size range discussed above. If Vestas is pursued, we recommend that the town focus on a Vestas Model V82, 1.65-MW WTG, which is reliable and well suited to the Ipswich wind regime.
- 5)In developing a procurement package, and/or negotiating with MMWEC and GE, the Town should seek a minimum three-year warranty on the WTG, tower and transformer (5 years is a maximum available, in general, and most desirable). The bids should provide an option to IMLD, with an associated price, that allows

IMLD, at the end of the warranty period, to have the supplier train at least three of its employees (or local personnel) to be capable of carrying out all routine (scheduled) O&M activities on the WTG – including carrying out all diagnostics and resets using an on-board SCADA system that reports to an IMLD monitoring center.

## **Appendix A** – SUMMARY OF WIND DATA MEASURED AT THE IPSWICH SITE BY UMASS

Table A-1: Mean Hourly Wind Speeds Ipswich, MA

10-M Height agl Wind Speed (mph)

June 1, 2003 - May 31, 2004

| Hour    | Jan    | Feb  | Mar  | Apr  | May | June | Jul   | Aug     | Sep  | Oct   | Nov    | Dec     | Mean |
|---------|--------|------|------|------|-----|------|-------|---------|------|-------|--------|---------|------|
|         |        |      |      |      |     |      |       |         |      |       |        |         |      |
| 1       | 8.7    | 6.5  | 7.5  | 6.3  | 5.3 | 4.1  | 4.5   | 4.1     | 3.3  | 5.8   | 6.4    | 8.5     | 5.9  |
| 2       | 9      | 7.1  | 7.1  | 6.5  | 5.2 | 4    | 3.8   | 3.6     | 3.7  | 5.6   | 6.7    | 8.3     | 5.9  |
| 3       | 8.4    | 7.1  | 6.9  | 7.1  | 4.8 | 3.8  | 3.9   | 3.5     | 3.7  | 5.6   | 6      | 8.4     | 5.7  |
| 4       | 8      | 7    | 6.5  | 6.7  | 5.5 | 3.1  | 3.6   | 3.7     | 3.9  | 6.1   | 6.1    | 8.7     | 5.7  |
| 5       | 7.5    | 6.7  | 6.7  | 7.2  | 5.5 | 3.4  | 3.7   | 3.8     | 4.2  | 5.7   | 6.5    | 8.9     | 5.8  |
| 6       | 6.9    | 6.6  | 6.7  | 7    | 5.8 | 4    | 4.1   | 3.9     | 4.2  | 6     | 6.5    | 9.1     | 5.9  |
| 7       | 7.1    | 6    | 6.8  | 7.3  | 5.8 | 4.5  | 4.6   | 4.7     | 4.3  | 5.8   | 6.9    | 8.4     | 6    |
| 8       | 7.9    | 6.8  | 7.3  | 7.9  | 6.9 | 4.8  | 5.1   | 5.2     | 5.1  | 6.1   | 7      | 8.1     | 6.5  |
| 9       | 9.2    | 7.4  | 8.1  | 8.3  | 7.7 | 5.6  | 5.7   | 5.4     | 5.6  | 6.9   | 7.2    | 8.3     | 7.1  |
| 10      | 9.5    | 7.5  | 8.6  | 8.7  | 7.7 | 5.5  | 6.2   | 6.2     | 6    | 7.4   | 7.7    | 9.5     | 7.5  |
| 11      | 9.9    | 8.3  | 9.8  | 8.8  | 8.3 | 6.6  | 6.8   | 6.4     | 5.8  | 8.3   | 8.1    | 9.5     | 8    |
| 12      | 10.3   | 8.4  | 10.4 | 9.5  | 9.2 | 6.8  | 7.4   | 6.5     | 6.5  | 8.7   | 8.3    | 10      | 8.5  |
| 13      | 9.9    | 9.6  | 10.2 | 9.6  | 9.1 | 6.9  | 7.9   | 7       | 6.4  | 8.7   | 8.3    | 9.4     | 8.6  |
| 14      | 10.3   | 9.4  | 10.7 | 10.1 | 8.7 | 7    | 8.5   | 7       | 6.1  | 8.6   | 8.5    | 10.1    | 8.7  |
| 15      | 9.9    | 9.6  | 10.3 | 9.5  | 8.7 | 6.1  | 8.3   | 7       | 6.6  | 8.1   | 7.8    | 9.9     | 8.5  |
| 16      | 9.3    | 9.1  | 9.9  | 9.1  | 7.9 | 5.9  | 8     | 6.1     | 6    | 7.8   | 6.5    | 9.1     | 7.9  |
| 17      | 8.1    | 7.7  | 8.9  | 8.1  | 7.6 | 5.4  | 6.8   | 4.7     | 4.5  | 6     | 6.9    | 8.9     | 7    |
| 18      | 8      | 7.5  | 8.5  | 7.1  | 6.8 | 4.3  | 5.9   | 4.1     | 3.5  | 5.8   | 6.8    | 9.3     | 6.5  |
| 19      | 7.7    | 6.6  | 8.2  | 6.9  | 5.5 | 4.3  | 5.2   | 4.5     | 3.5  | 5.8   | 6.6    | 9       | 6.1  |
| 20      | 8.3    | 7.7  | 7.8  | 6.6  | 4.8 | 4.7  | 4.7   | 4.5     | 3.5  | 5.2   | 6      | 9.4     | 6.1  |
| 21      | 8.6    | 7.9  | 7.4  | 6.6  | 4.6 | 4.7  | 4.6   | 4.3     | 3.6  | 5.7   | 6.6    | 9.5     | 6.2  |
| 22      | 8.4    | 7.5  | 8    | 6.2  | 5.1 | 4.7  | 4.7   | 4.4     | 3.6  | 5.7   | 6.8    | 9.1     | 6.2  |
| 23      | 9      | 7.1  | 7.5  | 6.1  | 5.1 | 4.6  | 4.7   | 3.9     | 3.4  | 5.7   | 6.6    | 9.1     | 6.1  |
| 24      | 9.1    | 6.5  | 7.5  | 6.7  | 5.2 | 4.3  | 4.3   | 4.2     | 3.7  | 5.9   | 7      | 9       | 6.1  |
|         |        |      |      |      |     |      |       |         |      |       |        |         |      |
| Mean    | 8.7    | 7.6  | 8.2  | 7.7  | 6.5 | 5    | 5.5   | 5       | 4.6  | 6.5   | 7      | 9.1     | 6.8  |
| Good H  | Hours  |      |      |      |     |      |       |         |      |       |        |         |      |
|         | 721    | 682  | 743  | 720  | 743 | 720  | 744   | 744     | 720  | 744   | 720    | 721     |      |
| Missing | g Hrs  |      |      |      |     |      |       |         |      |       |        |         |      |
|         | 23     | 14   | 1    | 0    | 1   | 0    | 0     | 0       | 0    | 0     | 0      | 23      |      |
| 8722    | Hrs of | good | data |      |     | 62   | Hrs n | nissing | data | 99.3% | Data r | ecovery |      |

Table A-2: Mean Hourly Wind Speeds Ipswich, MA

30-M Height agl

Wind Speed (mph)

| June | 1, | 2003 | - Mag | y 31, | 2004 |
|------|----|------|-------|-------|------|
|------|----|------|-------|-------|------|

| Hour    | Jan    | Feb      | Mar      | Apr  | May  | June | Jul       | Aug     | Sep | Oct   | Nov            | Dec  | Mean |
|---------|--------|----------|----------|------|------|------|-----------|---------|-----|-------|----------------|------|------|
|         |        |          |          |      |      |      |           |         |     |       |                |      |      |
| 1       | 12.4   | 9.9      | 11.4     | 10.6 | 8.4  | 7.6  | 7.3       | 7.4     | 6.7 | 10    | 10.3           | 13.6 | 9.6  |
| 2       | 12.7   | 10.2     | 11.2     | 11.2 | 8.7  | 7.9  | 6.8       | 6.8     | 7.3 | 9.7   | 10.4           | 12.9 | 9.6  |
| 3       | 12.1   | 10.8     | 10.8     | 11.7 | 8.3  | 7.8  | 7         | 6.9     | 7.4 | 10.1  | 9.4            | 13   | 9.6  |
| 4       | 11.4   | 10.5     | 10.5     | 11.3 | 9.3  | 6.8  | 6.7       | 7.1     | 8   | 10.8  | 9.8            | 13.8 | 9.6  |
| 5       | 10.8   | 10.2     | 10.8     | 12   | 9.3  | 6.9  | 6.8       | 7.4     | 8.4 | 10.3  | 10.2           | 14.1 | 9.7  |
| 6       | 10.4   | 9.8      | 10.8     | 12   | 8.9  | 7.3  | 6.8       | 6.9     | 8.4 | 10.7  | 10             | 14.1 | 9.7  |
| 7       | 10.5   | 9.1      | 10.7     | 11.8 | 9.1  | 7.8  | 7         | 7.6     | 7.5 | 10.3  | 10.6           | 13   | 9.6  |
| 8       | 10.7   | 9.7      | 11.5     | 12.1 | 10.3 | 8.5  | 7.5       | 8.2     | 8.9 | 9.4   | 10.5           | 11.6 | 9.9  |
| 9       | 12.1   | 10.2     | 11.9     | 12.2 | 11.3 | 9.2  | 7.9       | 8.5     | 9.2 | 10.1  | 10.3           | 11.8 | 10.4 |
| 10      | 12.7   | 10.4     | 12.4     | 12.9 | 11.3 | 9.2  | 8.5       | 8.9     | 9.4 | 10.5  | 11             | 13.4 | 10.9 |
| 11      | 13.3   | 11       | 13.7     | 12.8 | 12.1 | 10.3 | 9.3       | 9.4     | 9.1 | 11.5  | 11.4           | 13.3 | 11.4 |
| 12      | 13.6   | 11.7     | 14.4     | 13.5 | 12.8 | 10.6 | 10        | 9.7     | 9.7 | 11.9  | 11.4           | 14.4 | 12   |
| 13      | 12.8   | 13       | 14.2     | 13.5 | 12.6 | 10.2 | 11.1      | 0.2     | 9.7 | 12.6  | 11.5           | 13.6 | 12.1 |
| 14      | 12.9   | 12.6     | 15       | 14.2 | 11.8 | 10.2 | 12        | 0.4     | 9.4 | 12.2  | 11.8           | 14.4 | 12.2 |
| 15      | 12.9   | 13       | 14.4     | 13.2 | 12   | 9.2  | 12        | 0.3     | 9.7 | 12    | 11.4           | 14.3 | 12   |
| 16      | 12.1   | 12.6     | 13.8     | 12.8 | 11.3 | 8.9  | 11.6      | 9.2     | 9   | 11.7  | 10.1           | 13.9 | 11.4 |
| 17      | 11.2   | 11.1     | 12.9     | 11.8 | 11   | 8.2  | 10.3      | 7.4     | 7.7 | 10    | 10.6           | 13.6 | 10.5 |
| 18      | 11.6   | 11.3     | 12.6     | 10.9 | 10.2 | 7.1  | 9         | 7.5     | 7.1 | 9.7   | 10.5           | 13.9 | 10.1 |
| 19      | 10.8   | 10.3     | 12       | 10.8 | 8.8  | 7.3  | 8.7       | 7.9     | 6.9 | 9.6   | 10.4           | 13.6 | 9.7  |
| 20      | 11.8   | 11.5     | 11.6     | 10.6 | 8.4  | 8    | 8.1       | 7.9     | 6.9 | 9.4   | 9.9            | 13.9 | 9.8  |
| 21      | 12.2   | 11.5     | 10.9     | 10.4 | 8    | 8.4  | 7.9       | 7.5     | 6.9 | 9.8   | 9.8            | 14.3 | 9.8  |
| 22      | 12.4   | 11.1     | 11.7     | 9.9  | 8    | 8.2  | 7.8       | 7.3     | 6.9 | 9.9   | 10.2           | 13.9 | 9.8  |
| 23      | 12.7   | 10.7     | 11.2     | 10.4 | 8.1  | 8.1  | 8.1       | 7.2     | 6.9 | 9.8   | 10             | 14.4 | 9.8  |
| 24      | 13     | 10       | 11.7     | 10.8 | 8.3  | 7.8  | 7.3       | 7.2     | 7.1 | 10.1  | 10.6           | 13.6 | 9.8  |
| Mean    | 12.1   | 10.9     | <br>12.2 | 11.8 | 9.9  | 8.4  | 8.6       | 8.1     | 8.1 | 10.5  | 10.5           | 13.6 | 10.4 |
| Good H  | Hrs    |          |          |      |      |      |           |         |     |       |                |      |      |
|         | 700    | 675      | 737      | 719  | 743  | 720  | 744       | 744     | 720 | 744   | 720            | 718  |      |
| Missing | g Hrs  |          |          |      |      |      |           |         |     |       |                |      |      |
|         | 44     | 21       | 7        | 1    | 1    | 0    | 0         | 0       | 0   | 0     | 0              | 26   |      |
| 8684    | Hrs of | f good ( | data     |      |      | 100  | Hrs missi | ng data | a   | 98.9% | Data<br>recove | ery  |      |

#### Table A-3: Mean Hourly Wind Speeds Ipswich, MA

| 30-M Height | Wind Speed |
|-------------|------------|
| agl         | (mph)      |

June 1, 2003 - May 31, 2004

| Hour    | Jan    | Feb  | Mar  | Apr  | May  | June | Jul   | Aug     | Sep  | Oct   | Nov            | Dec  | Mean |
|---------|--------|------|------|------|------|------|-------|---------|------|-------|----------------|------|------|
|         |        |      |      |      |      |      |       |         |      |       |                |      |      |
| 1       | 12.3   | 10.2 | 11.6 | 10.6 | 8.5  | 7.6  | 7.3   | 7.3     | 6.8  | 9.7   | 10.2           | 13.8 | 9.6  |
| 2       | 12.6   | 10.1 | 11.3 | 11.3 | 8.7  | 7.8  | 6.8   | 6.8     | 7.4  | 9.6   | 10.3           | 13   | 9.6  |
| 3       | 12.1   | 10.8 | 11.1 | 11.8 | 8.4  | 7.6  | 7     | 6.8     | 7.5  | 9.8   | 9.4            | 12.9 | 9.6  |
| 4       | 11.4   | 10.5 | 10.7 | 11.4 | 9.4  | 6.8  | 6.7   | 7.1     | 8.1  | 10.6  | 9.8            | 13.8 | 9.7  |
| 5       | 10.8   | 10.2 | 10.8 | 12.1 | 9.4  | 6.8  | 6.8   | 7.3     | 8.5  | 10.1  | 10.2           | 14   | 9.7  |
| 6       | 10.4   | 9.7  | 10.8 | 12   | 9    | 7.3  | 6.8   | 6.9     | 8.4  | 10.5  | 10             | 13.9 | 9.6  |
| 7       | 10.4   | 9.1  | 10.7 | 11.8 | 9.1  | 7.8  | 7     | 7.6     | 7.6  | 10.1  | 10.7           | 13   | 9.6  |
| 8       | 10.7   | 9.6  | 11.4 | 12.3 | 10.3 | 8.4  | 7.5   | 8.2     | 8.9  | 9.3   | 10.5           | 11.6 | 9.9  |
| 9       | 12.1   | 10   | 11.9 | 12.3 | 11.4 | 9.3  | 8     | 8.4     | 9.3  | 10    | 10.3           | 11.6 | 10.4 |
| 10      | 12.8   | 10.3 | 12.5 | 13   | 11.3 | 9.3  | 8.6   | 8.9     | 9.6  | 10.4  | 11             | 13.2 | 10.9 |
| 11      | 13.3   | 10.9 | 13.9 | 12.9 | 12.1 | 10.4 | 9.4   | 9.4     | 9.3  | 11.5  | 11.4           | 13.2 | 11.4 |
| 12      | 13.6   | 11.6 | 14.7 | 13.4 | 12.8 | 10.6 | 10    | 9.7     | 9.9  | 11.8  | 11.4           | 14.2 | 12   |
| 13      | 13     | 12.9 | 14.4 | 13.6 | 12.6 | 10.2 | 10.9  | 0.2     | 9.7  | 12.4  | 11.4           | 13.4 | 12.1 |
| 14      | 13     | 12.5 | 15   | 14.2 | 12   | 10.2 | 11.9  | 0.4     | 9.5  | 12.1  | 11.6           | 14.2 | 12.2 |
| 15      | 12.9   | 12.9 | 14.4 | 13.4 | 12.2 | 9.4  | 11.9  | 0.2     | 9.7  | 11.9  | 11.5           | 14.2 | 12   |
| 16      | 12.1   | 12.5 | 13.8 | 12.9 | 11.5 | 9    | 11.4  | 9.1     | 9    | 11.6  | 9.9            | 13.8 | 11.4 |
| 17      | 11.2   | 11.3 | 13.1 | 11.8 | 11.2 | 8.2  | 10.3  | 7.4     | 7.6  | 10    | 10.5           | 13.5 | 10.5 |
| 18      | 11.7   | 11.4 | 12.8 | 10.9 | 10.4 | 7.2  | 9.1   | 7.6     | 7.1  | 9.7   | 10.3           | 13.9 | 10.2 |
| 19      | 10.7   | 10.3 | 12.1 | 11   | 8.9  | 7.4  | 8.9   | 7.9     | 6.9  | 9.5   | 10.1           | 13.7 | 9.8  |
| 20      | 11.8   | 11.5 | 12   | 10.7 | 8.5  | 8.1  | 8.2   | 7.9     | 7    | 9.3   | 9.7            | 13.9 | 9.9  |
| 21      | 12.3   | 11.4 | 11.1 | 10.6 | 8.1  | 8.6  | 8     | 7.5     | 6.9  | 9.7   | 9.8            | 14.3 | 9.8  |
| 22      | 12.4   | 11   | 11.9 | 9.8  | 8    | 8.4  | 7.8   | 7.4     | 6.9  | 9.8   | 10.2           | 13.9 | 9.8  |
| 23      | 12.8   | 10.7 | 11.4 | 10.4 | 8.1  | 8.2  | 8.1   | 7.2     | 6.9  | 9.7   | 9.9            | 14.4 | 9.8  |
| 24      | 13     | 9.9  | 11.8 | 10.9 | 8.3  | 7.8  | 7.4   | 7.3     | 7.2  | 10    | 10.7           | 13.6 | 9.8  |
| Mean    | 12.1   | 10.9 | 12.3 | 11.9 | 10   | 8.4  | 8.6   | 8.1     | 8.2  | 10.4  | 10.5           | 13.5 | 10.4 |
| Good H  | Hrs    | 074  | 740  | 700  | 740  | 740  | 744   | 740     | 700  | 740   | 740            | 740  |      |
|         | 700    | 674  | 743  | 720  | 742  | /18  | 741   | 743     | 720  | 743   | 719            | /18  |      |
| Missing | g Hrs  |      |      |      |      |      |       |         |      |       |                |      |      |
|         | 44     | 22   | 1    | 0    | 2    | 2    | 3     | 1       | 0    | 1     | 1              | 26   |      |
| 8681    | Hrs of | good | data |      |      | 103  | Hrs m | nissing | data | 98.8% | Data<br>recove | ery  |      |

#### Table A-4: Mean Hourly Wind Speeds Ipswich, MA

| 39-M Height | Wind Speed |
|-------------|------------|
| agl         | (mph)      |

| Hour    | Jan    | Feb    | Mar  | Apr  | May  | June | Jul   | Aug     | Sep  | Oct   | Nov            | Dec  | Mean |
|---------|--------|--------|------|------|------|------|-------|---------|------|-------|----------------|------|------|
|         |        |        |      |      |      |      |       |         |      |       |                |      |      |
| 1       | 13.6   | 11.6   | 12.4 | 11.7 | 9.4  | 8.7  | 8.5   | 8.5     | 7.8  | 11.4  | 11.5           | 15.2 | 10.8 |
| 2       | 13.9   | 11.3   | 12.1 | 12.6 | 9.7  | 9    | 8     | 7.8     | 8.6  | 11.1  | 11.6           | 14.1 | 10.8 |
| 3       | 13.3   | 12.1   | 12.2 | 13.1 | 9.3  | 9.1  | 8.3   | 8.1     | 8.7  | 11.4  | 10.8           | 14.3 | 10.9 |
| 4       | 12.5   | 11.8   | 11.8 | 12.7 | 10.6 | 8.1  | 8     | 8.4     | 9.2  | 12    | 11.1           | 15   | 10.9 |
| 5       | 11.9   | 11.4   | 12   | 13.1 | 10.6 | 8.2  | 7.9   | 8.6     | 9.6  | 11.8  | 11.4           | 15.6 | 11   |
| 6       | 11.5   | 11.2   | 12   | 12.9 | 9.8  | 8.3  | 7.7   | 7.9     | 9.5  | 12.4  | 11.3           | 15.5 | 10.8 |
| 7       | 11.5   | 10.5   | 11.9 | 12.7 | 10   | 8.6  | 7.7   | 8.3     | 8.7  | 11.7  | 11.7           | 14.5 | 10.6 |
| 8       | 11.6   | 11.1   | 12.4 | 13   | 11.1 | 9.3  | 8.1   | 8.9     | 9.8  | 10.5  | 11.5           | 12.6 | 10.8 |
| 9       | 12.7   | 11.1   | 12.7 | 13.1 | 12.1 | 9.9  | 8.6   | 9.2     | 10.1 | 10.9  | 11.2           | 12.9 | 11.2 |
| 10      | 13.3   | 11.1   | 13.1 | 13.9 | 12.1 | 10   | 9     | 9.6     | 10.2 | 11.3  | 11.9           | 14.3 | 11.6 |
| 11      | 13.8   | 11.4   | 14.5 | 13.7 | 12.9 | 11.1 | 9.9   | 9.9     | 9.9  | 12.2  | 12.2           | 14.2 | 12.1 |
| 12      | 14.3   | 12.7   | 15.1 | 14.3 | 13.6 | 11.3 | 10.6  | 0.4     | 10.5 | 12.7  | 12.1           | 15.4 | 12.7 |
| 13      | 13.5   | 13.9   | 15.1 | 14.4 | 13.3 | 10.8 | 11.8  | 1       | 10.4 | 13.4  | 12.2           | 14.7 | 12.9 |
| 14      | 13.8   | 13.5   | 15.8 | 15   | 12.6 | 10.8 | 12.8  | 1.2     | 10.2 | 13.1  | 12.7           | 15.5 | 13.1 |
| 15      | 13.7   | 13.8   | 15.1 | 14.1 | 12.9 | 9.9  | 12.8  | 1.1     | 10.4 | 12.9  | 12.4           | 15.3 | 12.9 |
| 16      | 12.9   | 13.8   | 14.7 | 13.7 | 12.1 | 9.5  | 12.3  | 9.9     | 9.6  | 12.7  | 10.9           | 15   | 12.3 |
| 17      | 12.2   | 12.1   | 13.7 | 12.8 | 11.9 | 8.8  | 11.2  | 8.2     | 8.4  | 11.1  | 11.7           | 14.9 | 11.4 |
| 18      | 12.6   | 12.5   | 13.7 | 12   | 11.1 | 7.9  | 10    | 8.6     | 8.1  | 11    | 11.5           | 15.3 | 11.2 |
| 19      | 11.8   | 11.6   | 13.1 | 11.9 | 9.8  | 8.3  | 9.9   | 9.1     | 8.1  | 10.8  | 11.4           | 15   | 10.9 |
| 20      | 12.9   | 12.9   | 12.8 | 11.7 | 9.5  | 9    | 9.3   | 9.2     | 8.1  | 10.7  | 11.2           | 15.6 | 11   |
| 21      | 13.5   | 12.9   | 12.1 | 11.7 | 9    | 9.5  | 9.3   | 8.8     | 8.1  | 11    | 11.1           | 15.6 | 11   |
| 22      | 13.7   | 12.4   | 12.9 | 10.9 | 8.8  | 9.6  | 9     | 8.4     | 8.1  | 11.1  | 11.3           | 15.2 | 10.9 |
| 23      | 13.9   | 12.3   | 12.4 | 11.7 | 9.2  | 9.1  | 9.3   | 8.5     | 8.1  | 11.2  | 11.2           | 15.6 | 11   |
| 24      | 14.2   | 11.3   | 11.8 | 12.1 | 9.1  | 9.1  | 8.6   | 8.4     | 8.1  | 11.3  | 11.7           | 15   | 10.9 |
| Mean    | 13     | 12.1   | 13.1 | 12.9 | 10.8 | 9.3  | 9.5   | 9.1     | 9.1  | 11.7  | 11.6           | 14.8 | 11.4 |
| Good H  | Irs    |        |      |      |      |      |       |         |      |       |                |      |      |
|         | 695    | 677    | 741  | 718  | 743  | 720  | 744   | 743     | 720  | 744   | 720            | 722  |      |
| Missing | g Hrs  |        |      |      |      |      |       |         |      |       |                |      |      |
|         | 49     | 19     | 3    | 2    | 1    | 0    | 0     | 1       | 0    | 0     | 0              | 22   |      |
| 8687    | Hrs of | good ( | data |      |      | 97   | Hrs m | nissing | data | 98.9% | Data<br>recove | ery  |      |

## Table A-5: Mean Hourly Values

Ipswich, Mass. 10-m Wind Direction

June 1, 2003 - May 31, 2004

| Hour    | Jan    | Feb  | Mar  | Apr | May | June | Jul   | Aug     | Sep  | Oct   | Nov            | Dec | Mean |
|---------|--------|------|------|-----|-----|------|-------|---------|------|-------|----------------|-----|------|
|         |        |      |      |     |     |      |       |         |      |       |                |     |      |
| 1       | 259    | 247  | 225  | 207 | 229 | 209  | 259   | 218     | 224  | 232   | 238            | 260 | 234  |
| 2       | 263    | 271  | 230  | 218 | 221 | 213  | 245   | 241     | 217  | 241   | 241            | 243 | 237  |
| 3       | 250    | 277  | 214  | 208 | 215 | 220  | 252   | 231     | 236  | 237   | 255            | 240 | 236  |
| 4       | 265    | 248  | 221  | 219 | 201 | 216  | 254   | 223     | 222  | 234   | 258            | 242 | 233  |
| 5       | 267    | 270  | 218  | 198 | 219 | 216  | 245   | 218     | 183  | 240   | 224            | 239 | 228  |
| 6       | 245    | 288  | 204  | 182 | 197 | 221  | 252   | 230     | 176  | 240   | 227            | 245 | 225  |
| 7       | 264    | 277  | 203  | 185 | 196 | 209  | 256   | 202     | 176  | 242   | 251            | 221 | 223  |
| 8       | 270    | 271  | 211  | 178 | 192 | 191  | 230   | 215     | 155  | 243   | 265            | 236 | 221  |
| 9       | 263    | 262  | 195  | 182 | 206 | 193  | 219   | 207     | 155  | 248   | 249            | 270 | 221  |
| 10      | 249    | 200  | 187  | 160 | 185 | 179  | 209   | 211     | 158  | 242   | 203            | 258 | 204  |
| 11      | 281    | 206  | 190  | 163 | 196 | 190  | 213   | 201     | 155  | 232   | 208            | 231 | 206  |
| 12      | 279    | 215  | 183  | 176 | 191 | 182  | 201   | 215     | 161  | 231   | 229            | 219 | 207  |
| 13      | 267    | 249  | 187  | 192 | 205 | 182  | 226   | 214     | 162  | 230   | 213            | 241 | 214  |
| 14      | 276    | 271  | 190  | 189 | 204 | 186  | 222   | 215     | 176  | 219   | 195            | 234 | 215  |
| 15      | 279    | 272  | 193  | 179 | 198 | 177  | 223   | 214     | 176  | 218   | 206            | 235 | 214  |
| 16      | 287    | 274  | 199  | 174 | 205 | 197  | 226   | 220     | 188  | 206   | 212            | 232 | 218  |
| 17      | 296    | 271  | 196  | 190 | 208 | 190  | 225   | 229     | 192  | 236   | 222            | 236 | 224  |
| 18      | 289    | 270  | 197  | 198 | 202 | 205  | 227   | 218     | 202  | 234   | 218            | 242 | 225  |
| 19      | 282    | 281  | 208  | 181 | 177 | 208  | 231   | 228     | 216  | 256   | 217            | 243 | 227  |
| 20      | 285    | 272  | 221  | 180 | 197 | 211  | 229   | 233     | 218  | 233   | 237            | 255 | 231  |
| 21      | 266    | 286  | 228  | 215 | 192 | 226  | 224   | 241     | 238  | 267   | 256            | 261 | 241  |
| 22      | 249    | 265  | 234  | 223 | 204 | 240  | 235   | 235     | 229  | 243   | 256            | 257 | 239  |
| 23      | 272    | 251  | 233  | 218 | 230 | 235  | 238   | 246     | 222  | 234   | 258            | 237 | 239  |
| 24      | 251    | 227  | 213  | 206 | 221 | 232  | 244   | 251     | 243  | 237   | 257            | 261 | 237  |
| Mean    | 269    | 259  | 208  | 193 | 204 | 205  | 233   | 223     | 195  | 237   | 233            | 243 | 225  |
| Good H  | Hrs    |      |      |     |     |      |       |         |      |       |                |     |      |
|         | 718    | 682  | 743  | 720 | 743 | 720  | 744   | 744     | 720  | 744   | 720            | 719 |      |
| Missing | g Hrs  |      |      |     |     |      |       |         |      |       |                |     |      |
|         | 26     | 14   | 1    | 0   | 1   | 0    | 0     | 0       | 0    | 0     | 0              | 25  |      |
| 8717    | Hrs of | good | data |     |     | 67   | Hrs m | nissina | data | 99.2% | Data<br>recove | ery |      |

## Table A-6: Mean Hourly Values

#### Ipswich, Mass. 30-m Wind Direction

| June 1, 2003 - | May 31, | 2004 |
|----------------|---------|------|
|----------------|---------|------|

| Hour        | Jan    | Feb  | Mar  | Apr | May | June | Jul   | Aug     | Sep  | Oct   | Nov    | Dec | Mean |
|-------------|--------|------|------|-----|-----|------|-------|---------|------|-------|--------|-----|------|
|             |        |      |      |     |     |      |       |         |      |       |        |     |      |
| 1           | 284    | 259  | 229  | 188 | 220 | 217  | 247   | 229     | 203  | 245   | 235    | 268 | 235  |
| 2           | 279    | 263  | 232  | 186 | 225 | 216  | 238   | 236     | 204  | 247   | 246    | 265 | 236  |
| 3           | 282    | 259  | 221  | 213 | 187 | 222  | 243   | 192     | 201  | 247   | 259    | 264 | 232  |
| 4           | 265    | 251  | 217  | 213 | 202 | 204  | 244   | 231     | 206  | 243   | 245    | 259 | 231  |
| 5           | 288    | 253  | 212  | 202 | 202 | 201  | 244   | 204     | 187  | 243   | 205    | 257 | 224  |
| 6           | 263    | 256  | 202  | 183 | 189 | 197  | 255   | 207     | 179  | 242   | 238    | 255 | 222  |
| 7           | 295    | 281  | 200  | 177 | 189 | 195  | 244   | 201     | 179  | 244   | 236    | 241 | 223  |
| 8           | 311    | 272  | 203  | 179 | 193 | 189  | 217   | 215     | 143  | 244   | 239    | 242 | 220  |
| 9           | 274    | 253  | 186  | 186 | 207 | 192  | 220   | 200     | 151  | 238   | 196    | 259 | 213  |
| 10          | 273    | 211  | 200  | 153 | 187 | 177  | 210   | 211     | 157  | 245   | 206    | 253 | 207  |
| 11          | 273    | 210  | 192  | 166 | 196 | 190  | 214   | 211     | 152  | 233   | 201    | 233 | 206  |
| 12          | 271    | 206  | 186  | 180 | 192 | 179  | 202   | 216     | 160  | 232   | 208    | 223 | 205  |
| 13          | 261    | 252  | 189  | 196 | 207 | 182  | 225   | 205     | 159  | 231   | 203    | 243 | 213  |
| 14          | 279    | 263  | 193  | 191 | 194 | 186  | 222   | 218     | 168  | 219   | 198    | 247 | 215  |
| 15          | 270    | 264  | 195  | 181 | 200 | 168  | 224   | 215     | 176  | 208   | 209    | 238 | 212  |
| 16          | 270    | 265  | 201  | 165 | 217 | 185  | 226   | 222     | 190  | 209   | 215    | 224 | 216  |
| 17          | 293    | 264  | 199  | 206 | 207 | 181  | 227   | 220     | 191  | 227   | 216    | 251 | 223  |
| 18          | 293    | 252  | 200  | 192 | 192 | 193  | 228   | 220     | 206  | 227   | 203    | 239 | 220  |
| 19          | 292    | 276  | 212  | 176 | 177 | 206  | 233   | 213     | 217  | 238   | 211    | 252 | 225  |
| 20          | 279    | 266  | 214  | 180 | 201 | 211  | 233   | 215     | 210  | 227   | 216    | 263 | 226  |
| 21          | 280    | 290  | 235  | 221 | 204 | 223  | 225   | 248     | 197  | 229   | 231    | 265 | 237  |
| 22          | 257    | 268  | 240  | 215 | 193 | 237  | 230   | 217     | 213  | 228   | 242    | 266 | 233  |
| 23          | 288    | 255  | 237  | 209 | 213 | 227  | 242   | 215     | 206  | 241   | 242    | 256 | 236  |
| 24          | 275    | 229  | 236  | 200 | 227 | 225  | 240   | 225     | 208  | 224   | 227    | 271 | 232  |
| Mean        | 279    | 255  | 210  | 190 | 201 | 200  | 231   | 216     | 186  | 234   | 222    | 251 | 222  |
| Good H      | Hrs    |      |      |     |     |      |       |         |      |       |        |     |      |
|             | 700    | 674  | 742  | 720 | 742 | 720  | 744   | 743     | 719  | 744   | 720    | 718 |      |
| Missing Hrs |        |      |      |     |     |      |       |         |      |       |        |     |      |
|             | 44     | 22   | 2    | 0   | 2   | 0    | 0     | 1       | 1    | 0     | 0      | 26  |      |
|             |        |      |      |     |     |      |       |         |      |       | Data   |     |      |
| 8686        | Hrs of | good | data |     |     | 98   | Hrs m | nissing | data | 98.9% | recove | ery |      |

## Table A-7: Mean Hourly Values

#### Ipswich, Mass. 39-m Wind Direction

| June 1, 20 | 03 - Ma | y 31, | 2004 |
|------------|---------|-------|------|
|------------|---------|-------|------|

| Hour        | Jan    | Feb  | Mar  | Apr | May | June | Jul   | Aug    | Sep  | Oct   | Nov    | Dec | Mean |
|-------------|--------|------|------|-----|-----|------|-------|--------|------|-------|--------|-----|------|
|             |        |      |      |     |     |      |       |        |      |       |        |     |      |
| 1           | 292    | 270  | 232  | 188 | 227 | 214  | 234   | 222    | 193  | 244   | 222    | 269 | 233  |
| 2           | 278    | 271  | 223  | 175 | 213 | 205  | 227   | 237    | 189  | 248   | 246    | 266 | 231  |
| 3           | 281    | 259  | 208  | 214 | 188 | 213  | 241   | 200    | 203  | 247   | 236    | 254 | 228  |
| 4           | 265    | 263  | 208  | 213 | 198 | 203  | 243   | 208    | 184  | 243   | 233    | 261 | 226  |
| 5           | 287    | 254  | 212  | 197 | 202 | 201  | 244   | 193    | 176  | 239   | 208    | 249 | 221  |
| 6           | 262    | 256  | 201  | 190 | 189 | 196  | 254   | 206    | 170  | 243   | 227    | 246 | 219  |
| 7           | 295    | 281  | 197  | 177 | 190 | 182  | 221   | 205    | 168  | 244   | 214    | 240 | 217  |
| 8           | 310    | 272  | 202  | 178 | 191 | 176  | 216   | 214    | 142  | 243   | 239    | 253 | 218  |
| 9           | 261    | 250  | 185  | 186 | 206 | 191  | 218   | 199    | 150  | 236   | 219    | 258 | 213  |
| 10          | 269    | 207  | 199  | 152 | 186 | 176  | 208   | 209    | 156  | 243   | 205    | 239 | 204  |
| 11          | 269    | 206  | 190  | 165 | 195 | 189  | 212   | 210    | 156  | 231   | 200    | 232 | 204  |
| 12          | 268    | 230  | 185  | 179 | 190 | 177  | 212   | 214    | 159  | 231   | 207    | 222 | 206  |
| 13          | 257    | 251  | 188  | 183 | 206 | 180  | 223   | 204    | 158  | 230   | 202    | 241 | 210  |
| 14          | 284    | 261  | 192  | 190 | 193 | 185  | 220   | 216    | 166  | 217   | 197    | 246 | 214  |
| 15          | 280    | 263  | 194  | 180 | 199 | 166  | 222   | 213    | 176  | 206   | 208    | 236 | 212  |
| 16          | 290    | 264  | 199  | 176 | 204 | 183  | 224   | 220    | 188  | 207   | 211    | 223 | 215  |
| 17          | 293    | 276  | 198  | 204 | 194 | 178  | 225   | 219    | 195  | 226   | 214    | 249 | 222  |
| 18          | 292    | 250  | 198  | 191 | 189 | 191  | 225   | 218    | 204  | 226   | 206    | 238 | 219  |
| 19          | 292    | 275  | 211  | 175 | 185 | 204  | 231   | 213    | 215  | 237   | 211    | 250 | 225  |
| 20          | 280    | 265  | 213  | 178 | 199 | 209  | 207   | 202    | 208  | 226   | 203    | 264 | 221  |
| 21          | 280    | 289  | 234  | 209 | 201 | 220  | 211   | 228    | 196  | 228   | 232    | 264 | 232  |
| 22          | 257    | 267  | 234  | 204 | 192 | 221  | 221   | 221    | 210  | 228   | 243    | 265 | 230  |
| 23          | 288    | 257  | 232  | 208 | 211 | 222  | 250   | 214    | 218  | 241   | 243    | 255 | 236  |
| 24          | 274    | 232  | 217  | 201 | 221 | 236  | 237   | 218    | 210  | 225   | 239    | 269 | 232  |
| Mean        | 279    | 257  | 206  | 188 | 199 | 197  | 226   | 213    | 183  | 233   | 219    | 250 | 220  |
| Good H      | Hrs    |      |      |     |     |      |       |        |      |       |        |     |      |
|             | 694    | 677  | 744  | 718 | 742 | 720  | 744   | 744    | 719  | 744   | 720    | 722 |      |
| Missing Hrs |        |      |      |     |     |      |       |        |      |       |        |     |      |
|             | 50     | 19   | 0    | 2   | 2   | 0    | 0     | 0      | 1    | 0     | 0      | 22  |      |
|             |        |      | _    |     |     |      |       |        |      |       | Data   |     |      |
| 8688        | Hrs of | good | data |     |     | 96   | Hrs m | issing | data | 98.9% | recove | ery |      |

Figure A-1:



## **Appendix B:**

### Derived and Other Data Employed in Projecting WTG Production Table B-1: Logan Airport Wind Speed Measurements (for correlation and scaling to a long-term average) Monthly Average Wind Speeds (mph)

Logan Airport

| Logan / |      |      |      |      |      |      |         |
|---------|------|------|------|------|------|------|---------|
|         | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | Average |
| Jan     |      | 10.1 | 11.7 | 13.3 | 13.8 | 12.3 | 12.2    |
| Feb     | 12.1 | 12.6 | 11.5 | 12.3 | 11.9 | 10.8 | 11.9    |
| Mar     | 12.7 | 13.5 | 11.3 | 11.4 | 12.7 | 12.2 | 12.3    |
| Apr     | 13.4 | 10.9 | 11.8 | 12.3 | 12.3 | 11.3 | 12.0    |
| Мау     | 11.2 | 11.3 | 12.1 | 10   | 10.6 | 11.5 | 11.1    |
| Jun     | 10.8 | 10.1 | 11   | 9    | 10.2 | 9.7  | 10.1    |
| Jul     | 10.3 | 10   | 10.7 | 9.7  | 9.2  |      | 10.0    |
| Aug     | 9.7  | 9.4  | 10.2 | 9.2  | 9.6  |      | 9.6     |
| Sep     | 10.3 | 10   | 10.4 | 8.8  | 9.8  |      | 9.9     |
| Oct     | 11.1 | 12.7 | 11.4 | 10.9 | 11   |      | 11.4    |
| Nov     | 10.9 | 12   | 12.5 | 10.6 | 11.2 |      | 11.4    |
| Dec     | 13   | 12.3 | 12.8 | 13.6 | 12.5 |      | 12.8    |
| Ann     |      |      |      |      |      |      | 11.23   |

| Average, June 1, '03 - May 31, '04: | 11.09167 |
|-------------------------------------|----------|
| Ratio: Long_term avg/12-mo avg.:    | 1.012898 |

....where data in yellow are coincident with UMass, Ipswich measurement period

Adjustment Factor from UMass Avg. to LT Avg. = 1.2%

## Table B-2. IMLD On-Peak and Off-Peak Monthly Schedule

| Assumptions                  |              |           |           |       |  |  |  |  |  |  |
|------------------------------|--------------|-----------|-----------|-------|--|--|--|--|--|--|
|                              | 30.42        |           |           |       |  |  |  |  |  |  |
| (2) Average weeks per month: |              |           |           |       |  |  |  |  |  |  |
|                              | Hrs per Avg. |           |           |       |  |  |  |  |  |  |
|                              | Month in     | On-Peak   | Off-Peak  | % on- |  |  |  |  |  |  |
| Hour                         | Hr Block     | Hrs/Month | Hrs/Month | Peak  |  |  |  |  |  |  |
| 1                            | 30.42        | 0.00      | 30.42     | 0.0%  |  |  |  |  |  |  |
| 2                            | 30.42        | 0.00      | 30.42     | 0.0%  |  |  |  |  |  |  |
| 3                            | 30.42        | 0.00      | 30.42     | 0.0%  |  |  |  |  |  |  |
| 4                            | 30.42        | 0.00      | 30.42     | 0.0%  |  |  |  |  |  |  |
| 5                            | 30.42        | 0.00      | 30.42     | 0.0%  |  |  |  |  |  |  |
| 6                            | 30.42        | 0.00      | 30.42     | 0.0%  |  |  |  |  |  |  |
| 7                            | 30.42        | 0.00      | 30.42     | 0.0%  |  |  |  |  |  |  |
| 8                            | 30.42        | 21.73     | 8.69      | 71.4% |  |  |  |  |  |  |
| 9                            | 30.42        | 21.73     | 8.69      | 71.4% |  |  |  |  |  |  |
| 10                           | 30.42        | 21.73     | 8.69      | 71.4% |  |  |  |  |  |  |
| 11                           | 30.42        | 21.73     | 8.69      | 71.4% |  |  |  |  |  |  |
| 12                           | 30.42        | 21.73     | 8.69      | 71.4% |  |  |  |  |  |  |
| 13                           | 30.42        | 21.73     | 8.69      | 71.4% |  |  |  |  |  |  |
| 14                           | 30.42        | 21.73     | 8.69      | 71.4% |  |  |  |  |  |  |
| 15                           | 30.42        | 21.73     | 8.69      | 71.4% |  |  |  |  |  |  |
| 16                           | 30.42        | 21.73     | 8.69      | 71.4% |  |  |  |  |  |  |
| 17                           | 30.42        | 21.73     | 8.69      | 71.4% |  |  |  |  |  |  |
| 18                           | 30.42        | 21.73     | 8.69      | 71.4% |  |  |  |  |  |  |
| 19                           | 30.42        | 21.73     | 8.69      | 71.4% |  |  |  |  |  |  |
| 20                           | 30.42        | 21.73     | 8.69      | 71.4% |  |  |  |  |  |  |
| 21                           | 30.42        | 21.73     | 8.69      | 71.4% |  |  |  |  |  |  |
| 22                           | 30.42        | 21.73     | 8.69      | 71.4% |  |  |  |  |  |  |
| 23                           | 30.42        | 21.73     | 8.69      | 71.4% |  |  |  |  |  |  |
| 24                           | 30.42        | 0.00      | 30.42     | 0.0%  |  |  |  |  |  |  |